scholarly journals Sequencing of over 100,000 individuals identifies multiple genes and rare variants associated with Crohns disease susceptibility

Author(s):  
Aleksejs Sazonovs ◽  
Christine R Stevens ◽  
Guhan R Venkataraman ◽  
Kai Yuan ◽  
Brandon Avila ◽  
...  

Genome-wide association studies (GWAS) have identified hundreds of loci associated with Crohns disease (CD); however, as with all complex diseases, deriving pathogenic mechanisms from these non-coding GWAS discoveries has been challenging. To complement GWAS and better define actionable biological targets, we analysed sequence data from more than 30,000 CD cases and 80,000 population controls. We observe rare coding variants in established CD susceptibility genes as well as ten genes where coding variation directly implicates the gene in disease risk for the first time.

Nature ◽  
2021 ◽  
Vol 590 (7845) ◽  
pp. 290-299 ◽  
Author(s):  
Daniel Taliun ◽  
◽  
Daniel N. Harris ◽  
Michael D. Kessler ◽  
Jedidiah Carlson ◽  
...  

AbstractThe Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.


2017 ◽  
Vol 242 (13) ◽  
pp. 1325-1334 ◽  
Author(s):  
Yizhou Zhu ◽  
Cagdas Tazearslan ◽  
Yousin Suh

Genome-wide association studies have shown that the far majority of disease-associated variants reside in the non-coding regions of the genome, suggesting that gene regulatory changes contribute to disease risk. To identify truly causal non-coding variants and their affected target genes remains challenging but is a critical step to translate the genetic associations to molecular mechanisms and ultimately clinical applications. Here we review genomic/epigenomic resources and in silico tools that can be used to identify causal non-coding variants and experimental strategies to validate their functionalities. Impact statement Most signals from genome-wide association studies (GWASs) map to the non-coding genome, and functional interpretation of these associations remained challenging. We reviewed recent progress in methodologies of studying the non-coding genome and argued that no single approach allows one to effectively identify the causal regulatory variants from GWAS results. By illustrating the advantages and limitations of each method, our review potentially provided a guideline for taking a combinatorial approach to accurately predict, prioritize, and eventually experimentally validate the causal variants.


2020 ◽  
Author(s):  
Samuel Hokin ◽  
Alan Cleary ◽  
Joann Mudge

Complex diseases, with many associated genetic and environmental factors, are a challenging target for genomic risk assessment. Genome-wide association studies (GWAS) associate disease status with, and compute risk from, individual common variants, which can be problematic for diseases with many interacting or rare variants. In addition, GWAS typically employ a reference genome which is not built from the subjects of the study, whose genetic background may differ from the reference and whose genetic characterization may be limited. We present a complementary method based on disease association with collections of genotypes, called frequented regions, on a pangenomic graph built from subjects' genomes. We introduce the pangenomic genotype graph, which is better suited than sequence graphs to human disease studies. Our method draws out collections of features, across multiple genomic segments, which are associated with disease status. We show that the frequented regions method consistently improves machine-learning classification of disease status over GWAS classification, allowing incorporation of rare or interacting variants. Notably, genomic segments that have few or no variants of genome-wide significance (p<5x10-8) provide much-improved classification with frequented regions, encouraging their application across the entire genome. Frequented regions may also be utilized for purposes such as choice of treatment in addition to prediction of disease risk.


2020 ◽  
Vol 66 (1) ◽  
pp. 11-23
Author(s):  
Yukihide Momozawa ◽  
Keijiro Mizukami

AbstractGenome-wide association studies have identified >10,000 genetic variants associated with various phenotypes and diseases. Although the majority are common variants, rare variants with >0.1% of minor allele frequency have been investigated by imputation and using disease-specific custom SNP arrays. Rare variants sequencing analysis mainly revealed have played unique roles in the genetics of complex diseases in humans due to their distinctive features, in contrast to common variants. Unique roles are hypothesis-free evidence for gene causality, a precise target of functional analysis for understanding disease mechanisms, a new favorable target for drug development, and a genetic marker with high disease risk for personalized medicine. As whole-genome sequencing continues to identify more rare variants, the roles associated with rare variants will also increase. However, a better estimation of the functional impact of rare variants across whole genome is needed to enhance their contribution to improvements in human health.


2019 ◽  
Author(s):  
Mart Kals ◽  
Tiit Nikopensius ◽  
Kristi Läll ◽  
Kalle Pärn ◽  
Timo Tõnis Sikka ◽  
...  

AbstractGenotype imputation has become a standard procedure prior genome-wide association studies (GWASs). For common and low-frequency variants, genotype imputation can be performed sufficiently accurately with publicly available and ethnically heterogeneous reference datasets like 1000 Genomes Project (1000G) and Haplotype Reference Consortium panels. However, the imputation of rare variants has been shown to be significantly more accurate when ethnically matched reference panel is used. Even more, greater genetic similarity between reference panel and target samples facilitates the detection of rare (or even population-specific) causal variants. Notwithstanding, the genome-wide downstream consequences and differences of using ethnically mixed and matched reference panels have not been yet comprehensively explored.We determined and quantified these differences by performing several comparative evaluations of the discovery-driven analysis scenarios. A variant-wise GWAS was performed on seven complex diseases and body mass index by using genome-wide genotype data of ∼37,000 Estonians imputed with ethnically mixed 1000G and ethnically matched imputation reference panels. Although several previously reported common (minor allele frequency; MAF > 5%) variant associations were replicated in both resulting imputed datasets, no major differences were observed among the genome-wide significant findings or in the fine-mapping effort. In the analysis of rare (MAF < 1%) coding variants, 46 significantly associated genes were identified in the ethnically matched imputed data as compared to four genes in the 1000G panel based imputed data. All resulting genes were consequently studied in the UK Biobank data.These associations provide a solid example of how rare variants can be efficiently analysed to discover novel, potentially functional genetic variants in relevant phenotypes. Furthermore, our work serves as proof of a cost-efficient study design, demonstrating that the usage of ethnically matched imputation reference panels can enable substantially improved imputation of rare variants, facilitating novel high-confidence findings in rare variant GWAS scans.Author summaryOver the last decade, genome-wide association studies (GWASs) have been widely used for detecting genetic biomarkers in a wide range of traits. Typically, GWASs are carried out using chip-based genotyping data, which are then combined with a more densely genotyped reference panel to infer untyped genetic variants in chip-typed individuals. The latter method is called genotype imputation and its accuracy depends on multiple factors. Publicly available and ethnically heterogeneous imputation reference panels (IRPs) such as 1000 Genomes Project (1000G) are sufficiently accurate for imputation of common and low-frequency variants, but custom ethnically matched IRPs outperform these in case of rare variants. In this work, we systematically compare downstream association analysis effects on eight complex traits in ∼37,000 Estonians imputed with ethnically mixed and ethnically matched IRPs. We do not observe major differences in the single variant analysis, where both imputed datasets replicate previously reported significant loci. But in the gene-based analysis of rare protein-coding variants we show that ethnically matched panel clearly outperforms 1000G panel based imputation, providing 10-fold increase in significant gene-trait associations. Our study demonstrates empirically that imputed data based on ethnically matched panel is very promising for rare variant analysis – it captures more population-specific variants and makes it possible to efficiently identify novel findings.


2019 ◽  
Author(s):  
Daniel Taliun ◽  
Daniel N. Harris ◽  
Michael D. Kessler ◽  
Jedidiah Carlson ◽  
Zachary A. Szpiech ◽  
...  

Summary paragraphThe Trans-Omics for Precision Medicine (TOPMed) program seeks to elucidate the genetic architecture and disease biology of heart, lung, blood, and sleep disorders, with the ultimate goal of improving diagnosis, treatment, and prevention. The initial phases of the program focus on whole genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here, we describe TOPMed goals and design as well as resources and early insights from the sequence data. The resources include a variant browser, a genotype imputation panel, and sharing of genomic and phenotypic data via dbGaP. In 53,581 TOPMed samples, >400 million single-nucleotide and insertion/deletion variants were detected by alignment with the reference genome. Additional novel variants are detectable through assembly of unmapped reads and customized analysis in highly variable loci. Among the >400 million variants detected, 97% have frequency <1% and 46% are singletons. These rare variants provide insights into mutational processes and recent human evolutionary history. The nearly complete catalog of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and non-coding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and extends the reach of nearly all genome-wide association studies to include variants down to ~0.01% in frequency.


2021 ◽  
Author(s):  
Abhishek Nag ◽  
Lawrence Middleton ◽  
Ryan S Dhindsa ◽  
Dimitrios Vitsios ◽  
Eleanor M Wigmore ◽  
...  

Genome-wide association studies have established the contribution of common and low frequency variants to metabolic biomarkers in the UK Biobank (UKB); however, the role of rare variants remains to be assessed systematically. We evaluated rare coding variants for 198 metabolic biomarkers, including metabolites assayed by Nightingale Health, using exome sequencing in participants from four genetically diverse ancestries in the UKB (N=412,394). Gene-level collapsing analysis, that evaluated a range of genetic architectures, identified a total of 1,303 significant relationships between genes and metabolic biomarkers (p<1x10-8), encompassing 207 distinct genes. These include associations between rare non-synonymous variants in GIGYF1 and glucose and lipid biomarkers, SYT7 and creatinine, and others, which may provide insights into novel disease biology. Comparing to a previous microarray-based genotyping study in the same cohort, we observed that 40% of gene-biomarker relationships identified in the collapsing analysis were novel. Finally, we applied Gene-SCOUT, a novel tool that utilises the gene-biomarker association statistics from the collapsing analysis to identify genes having similar biomarker fingerprints and thus expand our understanding of gene networks.


Sign in / Sign up

Export Citation Format

Share Document