scholarly journals Quantifying non-CO2 contributions to remaining carbon budgets

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Stuart Jenkins ◽  
Michelle Cain ◽  
Pierre Friedlingstein ◽  
Nathan Gillett ◽  
Tristram Walsh ◽  
...  

AbstractThe IPCC Special Report on 1.5 °C concluded that anthropogenic global warming is determined by cumulative anthropogenic CO2 emissions and the non-CO2 radiative forcing level in the decades prior to peak warming. We quantify this using CO2-forcing-equivalent (CO2-fe) emissions. We produce an observationally constrained estimate of the Transient Climate Response to cumulative carbon Emissions (TCRE), giving a 90% confidence interval of 0.26–0.78 °C/TtCO2, implying a remaining total CO2-fe budget from 2020 to 1.5 °C of 350–1040 GtCO2-fe, where non-CO2 forcing changes take up 50 to 300 GtCO2-fe. Using a central non-CO2 forcing estimate, the remaining CO2 budgets are 640, 545, 455 GtCO2 for a 33, 50 or 66% chance of limiting warming to 1.5 °C. We discuss the impact of GMST revisions and the contribution of non-CO2 mitigation to remaining budgets, determining that reporting budgets in CO2-fe for alternative definitions of GMST, displaying CO2 and non-CO2 contributions using a two-dimensional presentation, offers the most transparent approach.

2021 ◽  
Author(s):  
Negar Vakilifard ◽  
Katherine Turner ◽  
Ric Williams ◽  
Philip Holden ◽  
Neil Edwards ◽  
...  

<p>The controls of the effective transient climate response (TCRE), defined in terms of the dependence of surface warming since the pre-industrial to the cumulative carbon emission, is explained in terms of climate model experiments for a scenario including positive emissions and then negative emission over a period of 400 years. We employ a pre-calibrated ensemble of GENIE, grid-enabled integrated Earth system model, consisting of 86 members to determine the process of controlling TCRE in both CO<sub>2</sub> emissions and drawdown phases. Our results are based on the GENIE simulations with historical forcing from AD 850 including land use change, and the future forcing defined by CO<sub>2</sub> emissions and a non-CO<sub>2</sub> radiative forcing timeseries. We present the results for the point-source carbon capture and storage (CCS) scenario as a negative emission scenario, following the medium representative concentration pathway (RCP4.5), assuming that the rate of emission drawdown is 2 PgC/yr CO<sub>2</sub> for the duration of 100 years. The climate response differs between the periods of positive and negative carbon emissions with a greater ensemble spread during the negative carbon emissions. The controls of the spread in ensemble responses are explained in terms of a combination of thermal processes (involving ocean heat uptake and physical climate feedback), radiative processes (saturation in radiative forcing from CO<sub>2</sub> and non-CO<sub>2</sub> contributions) and carbon dependences (involving terrestrial and ocean carbon uptake).  </p>


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
H. Damon Matthews ◽  
Katarzyna B. Tokarska ◽  
Joeri Rogelj ◽  
Christopher J. Smith ◽  
Andrew H. MacDougall ◽  
...  

AbstractThe remaining carbon budget quantifies the future CO2 emissions to limit global warming below a desired level. Carbon budgets are subject to uncertainty in the Transient Climate Response to Cumulative CO2 Emissions (TCRE), as well as to non-CO2 climate influences. Here we estimate the TCRE using observational constraints, and integrate the geophysical and socioeconomic uncertainties affecting the distribution of the remaining carbon budget. We estimate a median TCRE of 0.44 °C and 5–95% range of 0.32–0.62 °C per 1000 GtCO2 emitted. Considering only geophysical uncertainties, our median estimate of the 1.5 °C remaining carbon budget is 440 GtCO2 from 2020 onwards, with a range of 230–670 GtCO2, (for a 67–33% chance of not exceeding the target). Additional socioeconomic uncertainty related to human decisions regarding future non-CO2 emissions scenarios can further shift the median 1.5 °C remaining carbon budget by ±170 GtCO2.


2020 ◽  
Author(s):  
Ric Williams ◽  
Paulo Ceppi ◽  
Anna Katavouta

<p>The surface warming response to carbon emissions, defines a climate metric, the Transient Climate Response to cumulative carbon Emissions (TCRE), which is important in estimating how much carbon may be emitted to avoid dangerous climate. The TCRE is diagnosed from a suite of 9 CMIP6 Earth system models following an annual 1% rise in atmospheric CO2 over 140 years.   The TCRE   is nearly constant in time during emissions for these climate models, but its value   differs between individual models. The near constancy of this climate metric is due to a strengthening in the surface warming per unit radiative forcing, involving a weakening in both the climate feedback parameter and   fraction of radiative forcing warming the ocean interior, which are compensated by a weakening in the radiative forcing per unit carbon emission from the radiative forcing saturating with increasing atmospheric CO2. Inter-model differences in the TCRE are mainly controlled by the   surface warming response to radiative forcing with large inter-model differences in physical climate feedbacks dominating over smaller, partly compensating differences in ocean heat uptake. Inter-model differences in the radiative forcing per unit carbon emission   provide smaller inter-model differences in the TCRE, which are mainly due to differences in the ratio of the radiative forcing and change in atmospheric CO2 rather than from differences in the airborne fraction.     Hence, providing tighter constraints in the climate projections for the TCRE during emissions requires improving estimates of the physical climate feedbacks,   the rate of ocean   heat uptake, and how the radiative forcing saturates with atmospheric CO2.</p>


2020 ◽  
Author(s):  
Stuart Jenkins ◽  
Michelle Cain ◽  
Pierre Friedlingstein ◽  
Nathan Gillett ◽  
Myles Allen

<p>The IPCC Special Report on 1.5°C concluded that the maximum level of anthropogenic global warming is “determined by cumulative net global anthropogenic CO2 emissions up to the time of net zero CO2 emissions and the level of non-CO2 radiative forcing” in the decades prior to the time of peak warming. Here we quantify this statement, using CO2-forcing-equivalent (CO2-fe) emissions to calculate remaining carbon budgets without treating available mitigation scenarios as a representative sample of possible futures.</p><p>CO2-fe emissions are used to calculate an observationally-constrained estimate of the Transient Climate Response to cumulative Emissions (TCRE) using a large ensemble of historical radaitve forcing timeseries. This observationally-constrained TCRE is used to calculate remaining total CO2-fe budgets from 2018 to 1.5°C, which we compare with results discussed in Chapter 2, SR15. We consider contributions to this total remaining budget from CO2 and non-CO2 sources using both historical observations and the available mitigation scenarios in the IAMC scenario database.</p><p>We calculate remaining CO2 budgets for a 33, 50 or 66% chance of limiting peak warming to 1.5°C and use these to assess the extent to which scenarios in the IAMC scenario database are consistent with ambitious mitigation as outlined in the Paris Agreement. We argue that, assuming no change in the definition of observed global warming and no increase in TCRE due to non-linear feedbacks, scenarios currently classified as “lower 2°C-compatible” are consistent with a best-estimate peak warming of 1.5°C.</p>


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Kaoru Tachiiri

AbstractThe transient climate response to cumulative carbon emissions (TCRE) is a key metric in estimating the remaining carbon budget for given temperature targets. However, the TCRE has a small scenario dependence that can be non-negligible for stringent temperature targets. To investigate the parametric correlations and scenario dependence of the TCRE, the present study uses a 512-member ensemble of an Earth system model of intermediate complexity (EMIC) perturbing 11 physical and biogeochemical parameters under scenarios with steady increases of 0.25%, 0.5%, 1%, 2%, or 4% per annum (ppa) in the atmospheric CO2 concentration (pCO2), or an initial increase of 1% followed by an annual decrease of 1% thereafter. Although a small difference of 5% (on average) in the TCRE is observed between the 1-ppa and 0.5-ppa scenarios, a significant scenario dependence is found for the other scenarios, with a tendency toward large values in gradual or decline-after-a-peak scenarios and small values in rapidly increasing scenarios. For all scenarios, correlation analysis indicates a remarkably large correlation between the equilibrium climate sensitivity (ECS) and the relative change in the TCRE, which is attributed to the longer response time of the high ECS model. However, the correlations of the ECS with the TCRE and its scenario dependence for scenarios with large pCO2 increase rates are slightly smaller, and those of biogeochemical parameters such as plant respiration and the overall pCO2–carbon cycle feedback are larger, than in scenarios with gradual increases. The ratio of the TCREs under the overshooting (i.e., 1-ppa decrease after a 1-ppa increase) and 1-ppa increase only scenarios had a clear positive relation with zero-emission commitments. Considering the scenario dependence of the TCRE, the remaining carbon budget for the 1.5 °C target could be reduced by 17 or 22% (before and after considering the unrepresented Earth system feedback) for the most extreme case (i.e., the 67th percentile when using the 0.25-ppa scenario as compared to the 1-ppa increase scenario). A single ensemble EMIC is also used to indicate that, at least for high ECS (high percentile) cases, the scenario dependence of the TCRE should be considered when estimating the remaining carbon budget.


2015 ◽  
Vol 28 (9) ◽  
pp. 3834-3845 ◽  
Author(s):  
Thomas L. Delworth ◽  
Fanrong Zeng ◽  
Anthony Rosati ◽  
Gabriel A. Vecchi ◽  
Andrew T. Wittenberg

Abstract Portions of western North America have experienced prolonged drought over the last decade. This drought has occurred at the same time as the global warming hiatus—a decadal period with little increase in global mean surface temperature. Climate models and observational analyses are used to clarify the dual role of recent tropical Pacific changes in driving both the global warming hiatus and North American drought. When observed tropical Pacific wind stress anomalies are inserted into coupled models, the simulations produce persistent negative sea surface temperature anomalies in the eastern tropical Pacific, a hiatus in global warming, and drought over North America driven by SST-induced atmospheric circulation anomalies. In the simulations herein the tropical wind anomalies account for 92% of the simulated North American drought during the recent decade, with 8% from anthropogenic radiative forcing changes. This suggests that anthropogenic radiative forcing is not the dominant driver of the current drought, unless the wind changes themselves are driven by anthropogenic radiative forcing. The anomalous tropical winds could also originate from coupled interactions in the tropical Pacific or from forcing outside the tropical Pacific. The model experiments suggest that if the tropical winds were to return to climatological conditions, then the recent tendency toward North American drought would diminish. Alternatively, if the anomalous tropical winds were to persist, then the impact on North American drought would continue; however, the impact of the enhanced Pacific easterlies on global temperature diminishes after a decade or two due to a surface reemergence of warmer water that was initially subducted into the ocean interior.


2021 ◽  
Vol 12 (2) ◽  
pp. 709-723
Author(s):  
Philip Goodwin ◽  
B. B. Cael

Abstract. Future climate change projections, impacts, and mitigation targets are directly affected by how sensitive Earth's global mean surface temperature is to anthropogenic forcing, expressed via the climate sensitivity (S) and transient climate response (TCR). However, the S and TCR are poorly constrained, in part because historic observations and future climate projections consider the climate system under different response timescales with potentially different climate feedback strengths. Here, we evaluate S and TCR by using historic observations of surface warming, available since the mid-19th century, and ocean heat uptake, available since the mid-20th century, to constrain a model with independent climate feedback components acting over multiple response timescales. Adopting a Bayesian approach, our prior uses a constrained distribution for the instantaneous Planck feedback combined with wide-ranging uniform distributions of the strengths of the fast feedbacks (acting over several days) and multi-decadal feedbacks. We extract posterior distributions by applying likelihood functions derived from different combinations of observational datasets. The resulting TCR distributions when using two preferred combinations of historic datasets both find a TCR of 1.5 (1.3 to 1.8 at 5–95 % range) ∘C. We find the posterior probability distribution for S for our preferred dataset combination evolves from S of 2.0 (1.6 to 2.5) ∘C on a 20-year response timescale to S of 2.3 (1.4 to 6.4) ∘C on a 140-year response timescale, due to the impact of multi-decadal feedbacks. Our results demonstrate how multi-decadal feedbacks allow a significantly higher upper bound on S than historic observations are otherwise consistent with.


Author(s):  
Xin Xu ◽  
Jeremy Gregory ◽  
Randolph Kirchain

Albedo is the measure of the ratio of solar radiation reflected by the Earth’s surface. High-albedo reflective surfaces absorb less energy and reflect more shortwave radiation. The change in radiative energy balance at the top-of-atmosphere (TOA), which is called radiative forcing (RF), reduces nearby air temperatures and influences the surrounding building energy demand (BED). The impact of reflective surfaces on RF and BED has been investigated separately by researchers through modeling and observational studies, however, no one has compared RF and BED impacts under the same context and the net effect of these two phenomena remains unclear. This paper presents a comprehensive approach to assess the net impacts of pavement albedo modification strategies in selected urban neighborhoods. We apply an adapted analytical model for RF and a hybrid model framework combining two different models for BED to estimate the impacts of increasing pavement albedo from 0.1 to 0.3 for different urban neighborhoods in Boston and Phoenix. The impact of several context-specific factors, including location, urban morphology, shadings etc., are taken into account in the models. Comparative analysis reveals that the net impact of changing pavement albedo can vary from one neighborhood to another. In Phoenix downtown, reflective pavements create net global warming potential burdens, while increasing pavement albedo results in potential savings in the Boston downtown area. This work provides insights into pavement albedo impacts at urban scale and supports more informed decisions on pavement designs that save energy and counteract some of the effects of global warming.


Author(s):  
J. M. Gregory ◽  
T. Andrews ◽  
P. Good

In the Coupled Model Intercomparison Project Phase 5 (CMIP5), the model-mean increase in global mean surface air temperature T under the 1pctCO2 scenario (atmospheric CO 2 increasing at 1% yr −1 ) during the second doubling of CO 2 is 40% larger than the transient climate response (TCR), i.e. the increase in T during the first doubling. We identify four possible contributory effects. First, the surface climate system loses heat less readily into the ocean beneath as the latter warms. The model spread in the thermal coupling between the upper and deep ocean largely explains the model spread in ocean heat uptake efficiency. Second, CO 2 radiative forcing may rise more rapidly than logarithmically with CO 2 concentration. Third, the climate feedback parameter may decline as the CO 2 concentration rises. With CMIP5 data, we cannot distinguish the second and third possibilities. Fourth, the climate feedback parameter declines as time passes or T rises; in 1pctCO2, this effect is less important than the others. We find that T projected for the end of the twenty-first century correlates more highly with T at the time of quadrupled CO 2 in 1pctCO2 than with the TCR, and we suggest that the TCR may be underestimated from observed climate change.


Sign in / Sign up

Export Citation Format

Share Document