scholarly journals 2D graphene oxide–aptamer conjugate materials for cancer diagnosis

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Simranjeet Singh Sekhon ◽  
Prabhsharan Kaur ◽  
Yang-Hoon Kim ◽  
Satpal Singh Sekhon

Abstract2D graphene oxide (GO) with large surface area, multivalent structure can easily bind single-stranded DNA/RNA (aptamers) through hydrophobic/π-stacking interactions, whereas aptamers having small size, excellent chemical stability and low immunogenicity bind to their targets with high affinity and specificity. GO–aptamer conjugate materials synthesized by integrating aptamers with GO can thus provide a better alternative to antibody-based strategies for cancer diagnostic and therapy. Moreover, GO’s excellent fluorescence quenching properties can be utilized to develop efficient fluorescence-sensing platforms. In this review, recent advances in GO–aptamer conjugate materials for the detection of major cancer biomarkers have been discussed.

2016 ◽  
Vol 26 (1) ◽  
pp. 1-7 ◽  
Author(s):  
A.N. Kapitonov ◽  
G.N. Alexandrov ◽  
F.D. Vasileva ◽  
S.A. Smagulova ◽  
V.B. Timofeev ◽  
...  

2020 ◽  
Vol 20 ◽  
Author(s):  
Si Yu ◽  
Menglin Huang ◽  
Jingyu Wang ◽  
Yongchang Zheng ◽  
Haifeng Xu

: Widely exploration of noninvasive tumor/cancer biomarkers has shed light on clinical diagnosis. However, many under-investigated biomarkers showed limited application potency due to low sensitivity and specificity, while extracellular vehicles (EVs) were gradually recognized as promising candidates. EVs are small vesicles transporting bioactive cargos between cells in multiple physiological processes and also in tumor/cancer pathogenesis. This review aimed to offer recent studies of EVs on structure, classification, physiological functions, as well as changes in tumor initiation and progression. Furthermore, we focused on advances of EVs and/or EV-related substances in cancer diagnosis, and summarized ongoing studies of promising candidates for future investigations.


The Analyst ◽  
2021 ◽  
Author(s):  
Ruirui Zhao ◽  
Lu Zhao ◽  
Haidi Feng ◽  
Xiaoliang Chen ◽  
Huilin Zhang ◽  
...  

Fluorescence sensing platforms based on HCR and G-quadruplex DNAzyme amplification strategies for the detection of prostate-specific antigen.


2015 ◽  
Vol 23 (10) ◽  
pp. 878-884 ◽  
Author(s):  
Javad Gholami ◽  
Mehrdad Manteghian ◽  
Alireza Badiei ◽  
Mehran Javanbakht ◽  
Hiroshi Ueda

Nanoscale ◽  
2016 ◽  
Vol 8 (24) ◽  
pp. 12272-12281 ◽  
Author(s):  
Jin-Kyoung Yang ◽  
Seon-Yeong Kwak ◽  
Su-Ji Jeon ◽  
Eunjin Lee ◽  
Jong-Min Ju ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Alien Balian ◽  
Frank J. Hernandez

AbstractEarly cancer diagnosis is a crucial element to improved treatment options and survival. Great research efforts have been made in the search for better performing cancer diagnostic biomarkers. However, the quest continues as novel biomarkers with high accuracy for an early diagnosis remain an unmet clinical need. Nucleases, which are enzymes capable of cleaving nucleic acids, have been long considered as potential cancer biomarkers. The implications of nucleases are key for biological functions, their presence in different cellular counterparts and catalytic activity led the enthusiasm towards investigating the role of nucleases as promising cancer biomarkers. However, the most essential feature of these proteins, which is their enzymatic activity, has not been fully exploited. This review discusses nucleases interrogated as cancer biomarkers, providing a glimpse of their physiological roles. Moreover, it highlights the potential of harnessing the enzymatic activity of cancer-associated nucleases as a novel diagnostic biomarker using nucleic acid probes as substrates.


2016 ◽  
Vol 2016 (13-14) ◽  
pp. 2125-2130 ◽  
Author(s):  
Vidhyadevi Thangaraj ◽  
Jules Bussiere ◽  
Jean-Marc Janot ◽  
Mikhael Bechelany ◽  
Maguy Jaber ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1213 ◽  
Author(s):  
Miguel Moreno ◽  
María Fernández-Algar ◽  
Javier Fernández-Chamorro ◽  
Jorge Ramajo ◽  
Encarnación Martínez-Salas ◽  
...  

Improvements in Systematic Evolution of Ligands by EXponential enrichment (SELEX) technology and DNA sequencing methods have led to the identification of a large number of active nucleic acid molecules after any aptamer selection experiment. As a result, the search for the fittest aptamers has become a laborious and time-consuming task. Herein, we present an optimized approach for the label-free characterization of DNA and RNA aptamers in parallel. The developed method consists in an Enzyme-Linked OligoNucleotide Assay (ELONA) coupled to either real-time quantitative PCR (qPCR, for DNA aptamers) or reverse transcription qPCR (RTqPCR, for RNA aptamers), which allows the detection of aptamer-target interactions in the high femtomolar range. We have applied this methodology to the affinity analysis of DNA and RNA aptamers selected against the poly(C)-binding protein 2 (PCBP-2). In addition, we have used ELONA-(RT)qPCR to quantify the dissociation constant (Kd) and maximum binding capacity (Bmax) of 16 high affinity DNA and RNA aptamers. The Kd values of the high affinity DNA aptamers were compared to those derived from colorimetric ELONA performed in parallel. Additionally, Electrophoretic Mobility Shift Assays (EMSA) were used to confirm the binding of representative PCBP-2-specific RNA aptamers in solution. We propose this ELONA-(RT)qPCR approach as a general strategy for aptamer characterization, with a broad applicability in biotechnology and biomedicine.


2018 ◽  
Vol 31 (2) ◽  
pp. 165-170 ◽  
Author(s):  
Lu Chen ◽  
Lei Zhang ◽  
Shen-long Jiang ◽  
Qun Zhang

Sign in / Sign up

Export Citation Format

Share Document