scholarly journals Statistical uncertainty quantification to augment clinical decision support: a first implementation in sleep medicine

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Dae Y. Kang ◽  
Pamela N. DeYoung ◽  
Justin Tantiongloc ◽  
Todd P. Coleman ◽  
Robert L. Owens

AbstractMachine learning has the potential to change the practice of medicine, particularly in areas that require pattern recognition (e.g. radiology). Although automated classification is unlikely to be perfect, few modern machine learning tools have the ability to assess their own classification confidence to recognize uncertainty that might need human review. Using automated single-channel sleep staging as a first implementation, we demonstrated that uncertainty information (as quantified using Shannon entropy) can be utilized in a “human in the loop” methodology to promote targeted review of uncertain sleep stage classifications on an epoch-by-epoch basis. Across 20 sleep studies, this feedback methodology proved capable of improving scoring agreement with the gold standard over automated scoring alone (average improvement in Cohen’s Kappa of 0.28), in a fraction of the scoring time compared to full manual review (60% reduction). In summary, our uncertainty-based clinician-in-the-loop framework promotes the improvement of medical classification accuracy/confidence in a cost-effective and economically resourceful manner.

2020 ◽  
Vol 10 (3) ◽  
pp. 104
Author(s):  
Myung Woo ◽  
Brooke Alhanti ◽  
Sam Lusk ◽  
Felicia Dunston ◽  
Stephen Blackwelder ◽  
...  

There is increasing application of machine learning tools to problems in healthcare, with an ultimate goal to improve patient safety and health outcomes. When applied appropriately, machine learning tools can augment clinical care provided to patients. However, even if a model has impressive performance characteristics, prospectively evaluating and effectively implementing models into clinical care remains difficult. The primary objective of this paper is to recount our experiences and challenges in comparing a novel machine learning-based clinical decision support tool to legacy, non-machine learning tools addressing potential safety events in the hospitals and to summarize the obstacles which prevented evaluation of clinical efficacy of tools prior to widespread institutional use. We collected and compared safety events data, specifically patient falls and pressure injuries, between the standard of care approach and machine learning (ML)-based clinical decision support (CDS). Our assessment was limited to performance of the model rather than the workflow due to challenges in directly comparing both approaches. We did note a modest improvement in falls with ML-based CDS; however, it was not possible to determine that overall improvement was due to model characteristics.


Author(s):  
. Anika ◽  
Navpreet Kaur

The paper exhibits a formal audit on early detection of heart disease which are the major cause of death. Computational science has potential to detect disease in prior stages automatically. With this review paper we describe machine learning for disease detection. Machine learning is a method of data analysis that automates analytical model building.Various techniques develop to predict cardiac disease based on cases through MRI was developed. Automated classification using machine learning. Feature extraction method using Cell Profiler and GLCM. Cell Profiler a public domain software, freely available is flourished by the Broad Institute's Imaging Platform and Glcm is a statistical method of examining texture .Various techniques to detect cardio vascular diseases.


2019 ◽  
Vol 7 (4) ◽  
pp. 184-190
Author(s):  
Himani Maheshwari ◽  
Pooja Goswami ◽  
Isha Rana

2019 ◽  
Vol 20 (5) ◽  
pp. 488-500 ◽  
Author(s):  
Yan Hu ◽  
Yi Lu ◽  
Shuo Wang ◽  
Mengying Zhang ◽  
Xiaosheng Qu ◽  
...  

Background: Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world&#039;s highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. </P><P> Objective: In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. </P><P> Results: Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. </P><P> Conclusion: This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.


2020 ◽  
Author(s):  
Mikołaj Morzy ◽  
Bartłomiej Balcerzak ◽  
Adam Wierzbicki ◽  
Adam Wierzbicki

BACKGROUND With the rapidly accelerating spread of dissemination of false medical information on the Web, the task of establishing the credibility of online sources of medical information becomes a pressing necessity. The sheer number of websites offering questionable medical information presented as reliable and actionable suggestions with possibly harmful effects poses an additional requirement for potential solutions, as they have to scale to the size of the problem. Machine learning is one such solution which, when properly deployed, can be an effective tool in fighting medical disinformation on the Web. OBJECTIVE We present a comprehensive framework for designing and curating of machine learning training datasets for online medical information credibility assessment. We show how the annotation process should be constructed and what pitfalls should be avoided. Our main objective is to provide researchers from medical and computer science communities with guidelines on how to construct datasets for machine learning models for various areas of medical information wars. METHODS The key component of our approach is the active annotation process. We begin by outlining the annotation protocol for the curation of high-quality training dataset, which then can be augmented and rapidly extended by employing the human-in-the-loop paradigm to machine learning training. To circumvent the cold start problem of insufficient gold standard annotations, we propose a pre-processing pipeline consisting of representation learning, clustering, and re-ranking of sentences for the acceleration of the training process and the optimization of human resources involved in the annotation. RESULTS We collect over 10 000 annotations of sentences related to selected subjects (psychiatry, cholesterol, autism, antibiotics, vaccines, steroids, birth methods, food allergy testing) for less than $7 000 employing 9 highly qualified annotators (certified medical professionals) and we release this dataset to the general public. We develop an active annotation framework for more efficient annotation of non-credible medical statements. The results of the qualitative analysis support our claims of the efficacy of the presented method. CONCLUSIONS A set of very diverse incentives is driving the widespread dissemination of medical disinformation on the Web. An effective strategy of countering this spread is to use machine learning for automatically establishing the credibility of online medical information. This, however, requires a thoughtful design of the training pipeline. In this paper we present a comprehensive framework of active annotation. In addition, we publish a large curated dataset of medical statements labelled as credible, non-credible, or neutral.


Sign in / Sign up

Export Citation Format

Share Document