scholarly journals Promoter-dependent nuclear RNA degradation ensures cell cycle-specific gene expression

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Mathieu Catala ◽  
Sherif Abou Elela
2020 ◽  
Author(s):  
Jonathan Lenz ◽  
Robert Liefke ◽  
Julianne Funk ◽  
Samuel Shoup ◽  
Andrea Nist ◽  
...  

AbstractThe generation of lineage-specific gene expression programmes that alter proliferation capacity, metabolic profile and cell type-specific functions during differentiation from multipotent stem cells to specialised cell types is crucial for development. During differentiation gene expression programmes are dynamically modulated by a complex interplay between sequence-specific transcription factors, associated cofactors and epigenetic regulators. Here, we study U-shaped (Ush), a multi-zinc finger protein that maintains the multipotency of stem cell-like hemocyte progenitors during Drosophila hematopoiesis. Using genomewide approaches we reveal that Ush binds to promoters and enhancers and that it controls the expression of three gene classes that encode proteins relevant to stem cell-like functions and differentiation: cell cycle regulators, key metabolic enzymes and proteins conferring specific functions of differentiated hemocytes. We employ complementary biochemical approaches to characterise the molecular mechanisms of Ush-mediated gene regulation. We uncover distinct Ush isoforms one of which binds the Nucleosome Remodeling and Deacetylation (NuRD) complex using an evolutionary conserved peptide motif. Remarkably, the Ush/NuRD complex specifically contributes to the repression of lineage-specific genes but does not impact the expression of cell cycle regulators or metabolic genes. This reveals a mechanism that enables specific and concerted modulation of functionally related portions of a wider gene expression programme. Finally, we use genetic assays to demonstrate that Ush and NuRD regulate enhancer activity during hemocyte differentiation in vivo and that both cooperate to suppress the differentiation of lamellocytes, a highly specialised blood cell type. Our findings reveal that Ush coordinates proliferation, metabolism and cell type-specific activities by isoform-specific cooperation with an epigenetic regulator.


1998 ◽  
Vol 18 (8) ◽  
pp. 4732-4743 ◽  
Author(s):  
Heather H. Shih ◽  
Sergei G. Tevosian ◽  
Amy S. Yee

ABSTRACT Differentiation is a coordinated process of irreversible cell cycle exit and tissue-specific gene expression. To probe the functions of the retinoblastoma protein (RB) family in cell differentiation, we isolated HBP1 as a specific target of RB and p130. Our previous work showed that HBP1 was a transcriptional repressor and a cell cycle inhibitor. The induction of HBP1, RB, and p130 upon differentiation in the muscle C2C12 cells suggested a coordinated role. Here we report that the expression of HBP1 unexpectedly blocked muscle cell differentiation without interfering with cell cycle exit. Moreover, the expression of MyoD and myogenin, but not Myf5, was inhibited in HBP1-expressing cells. HBP1 inhibited transcriptional activation by the MyoD family members. The inhibition of MyoD family function by HBP1 required binding to RB and/or p130. Since Myf5 might function upstream of MyoD, our data suggested that HBP1 probably blocked differentiation by disrupting Myf5 function, thus preventing expression of MyoD and myogenin. Consistent with this, the expression of each MyoD family member could reverse the inhibition of differentiation by HBP1. Further investigation implicated the relative ratio of RB to HBP1 as a determinant of whether cell cycle exit or full differentiation occurred. At a low RB/HBP1 ratio cell cycle exit occurred but there was no tissue-specific gene expression. At elevated RB/HBP1 ratios full differentiation occurred. Similar changes in the RB/HBP1 ratio have been observed in normal C2 differentiation. Thus, we postulate that the relative ratio of RB to HBP1 may be one signal for activation of the MyoD family. We propose a model in which a checkpoint of positive and negative regulation may coordinate cell cycle exit with MyoD family activation to give fidelity and progression in differentiation.


2010 ◽  
Vol 123 (24) ◽  
pp. 4374-4381 ◽  
Author(s):  
K. Papadopoulou ◽  
J.-S. Chen ◽  
E. Mead ◽  
A. Feoktistova ◽  
C. Petit ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. SCI-28-SCI-28
Author(s):  
Patricia Ernst ◽  
Erika L. Artinger ◽  
Bibhu P. Mishra ◽  
Kristin M. Zaffuto ◽  
Bin E. Li ◽  
...  

Abstract Abstract SCI-28 Epigenetic regulation of gene expression plays a central role in normal hematopoietic stem cell (HSC) maintenance and leukemogenesis. The histone methyltransferase, MLL1, is essential for the maintenance of HSCs and is a common target of chromosomal translocations that result in acute leukemia. To discover genetic networks regulated by MLL1 in HSCs, we identified genes that were acutely deregulated upon Mll1 loss in HSCs, using a conditional knockout approach and lineage-negative, c-Kit+, Sca-1+, CD48-negative (LSK/CD48neg) cells. The majority of genes that changed were proliferation-associated genes, upregulated in Mll1−/− LSK/CD48neg cells. This reflected the fact that Mll1-deficient HSCs exhibit increased proliferation in vivo, a phenotype previously documented using the Mx1-cre inducible model. To determine whether the increased proliferation was cell-intrinsic, we performed single cell proliferation studies in serum-free medium containing SCF, IL-11, and Flt3L. We found that Mll1−/− LSK/CD48neg single cells entered the cell cycle earlier and that each cell cycle was shorter than wild-type controls. Evidence for failure to suppress lineage-specific gene expression was also observed; specifically, five percent of the upregulated genes encoded erythroid-specific proteins. These included erythroid transcriptional regulators such as GATA1 and KLF1, but also structural proteins such as spectrin, KEL, and EpoR. The relationship between erythroid-lineage genes and Mll1 was unique, since no other lineage-specific programs were upregulated in Mll1−/− LSK/CD48neg cells. Among the genes downregulated upon Mll1 loss, the largest category was comprised of transcriptional regulators, including Mecom, Pbx1, and Prdm16, which are known to control HSC self-renewal and quiescence. As observed in many other tissues, Mll1−/− LSK/CD48neg cells also exhibited reduced Hoxa9 expression. Interestingly, not all identified MLL1 target genes required menin, a cofactor thought to participate in directing MLL1 to particular genomic loci in vivo, and not all targets were Mll1-dependent in nonhematopoietic tissues. Chromatin immunoprecipitation and functional studies suggest that the identified genes act within a series of parallel pathways as direct transcriptional targets of MLL1. Interestingly, reexpression of Prdm16 alone could rescue Mll1-deficient cells from rapid attrition in bone marrow chimeras. Furthermore, Prdm16 corrected the hyperproliferation phenotype of Mll1−/− LSK/CD48neg cells. These data demonstrate that MLL1 coordinately regulates proliferation, lineage-specific gene expression programs, and self-renewal. By elucidating the normal MLL1-dependent transcriptional network within HSCs, we show that this pathway is overlapping but distinguishable from the leukemogenic pathway, suggesting that targeted therapy with minimal side effects on hematopoiesis will be feasible. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document