Coordinating Self-Renewal and Proliferation via MLL1-HOX Pathways and Beyond

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. SCI-28-SCI-28
Author(s):  
Patricia Ernst ◽  
Erika L. Artinger ◽  
Bibhu P. Mishra ◽  
Kristin M. Zaffuto ◽  
Bin E. Li ◽  
...  

Abstract Abstract SCI-28 Epigenetic regulation of gene expression plays a central role in normal hematopoietic stem cell (HSC) maintenance and leukemogenesis. The histone methyltransferase, MLL1, is essential for the maintenance of HSCs and is a common target of chromosomal translocations that result in acute leukemia. To discover genetic networks regulated by MLL1 in HSCs, we identified genes that were acutely deregulated upon Mll1 loss in HSCs, using a conditional knockout approach and lineage-negative, c-Kit+, Sca-1+, CD48-negative (LSK/CD48neg) cells. The majority of genes that changed were proliferation-associated genes, upregulated in Mll1−/− LSK/CD48neg cells. This reflected the fact that Mll1-deficient HSCs exhibit increased proliferation in vivo, a phenotype previously documented using the Mx1-cre inducible model. To determine whether the increased proliferation was cell-intrinsic, we performed single cell proliferation studies in serum-free medium containing SCF, IL-11, and Flt3L. We found that Mll1−/− LSK/CD48neg single cells entered the cell cycle earlier and that each cell cycle was shorter than wild-type controls. Evidence for failure to suppress lineage-specific gene expression was also observed; specifically, five percent of the upregulated genes encoded erythroid-specific proteins. These included erythroid transcriptional regulators such as GATA1 and KLF1, but also structural proteins such as spectrin, KEL, and EpoR. The relationship between erythroid-lineage genes and Mll1 was unique, since no other lineage-specific programs were upregulated in Mll1−/− LSK/CD48neg cells. Among the genes downregulated upon Mll1 loss, the largest category was comprised of transcriptional regulators, including Mecom, Pbx1, and Prdm16, which are known to control HSC self-renewal and quiescence. As observed in many other tissues, Mll1−/− LSK/CD48neg cells also exhibited reduced Hoxa9 expression. Interestingly, not all identified MLL1 target genes required menin, a cofactor thought to participate in directing MLL1 to particular genomic loci in vivo, and not all targets were Mll1-dependent in nonhematopoietic tissues. Chromatin immunoprecipitation and functional studies suggest that the identified genes act within a series of parallel pathways as direct transcriptional targets of MLL1. Interestingly, reexpression of Prdm16 alone could rescue Mll1-deficient cells from rapid attrition in bone marrow chimeras. Furthermore, Prdm16 corrected the hyperproliferation phenotype of Mll1−/− LSK/CD48neg cells. These data demonstrate that MLL1 coordinately regulates proliferation, lineage-specific gene expression programs, and self-renewal. By elucidating the normal MLL1-dependent transcriptional network within HSCs, we show that this pathway is overlapping but distinguishable from the leukemogenic pathway, suggesting that targeted therapy with minimal side effects on hematopoiesis will be feasible. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1204-1204
Author(s):  
Xi Jin ◽  
Tingting Qin ◽  
Nathanael G Bailey ◽  
Meiling Zhao ◽  
Kevin B Yang ◽  
...  

Abstract Activating mutations in RAS and somatic loss-of-function mutations in the ten-eleven translocation 2 (TET2) are frequently detected in hematologic malignancies. Global genomic sequencing revealed the co-occurrence of RAS and TET2 mutations in chronic myelomonocytic leukemias (CMMLs) and acute myeloid leukemias (AMLs), suggesting that the two mutations collaborate to induce malignant transformation. However, how the two mutations interact with each other, and the effects of co-existing RAS and TET2 mutations on hematopoietic stem cell (HSC) function and leukemogenesis, remains unknown. In this study, we generated conditional Mx1-Cre+;NrasLSL-G12D/+;Tet2fl/+mice (double mutant) and activated the expression of mutant Nras and Tet2 in hematopoietic tissues with poly(I:C) injections. Double mutant mice had significantly reduced survival compared to mice expressing only NrasG12D/+ or Tet2+/-(single mutants). Hematopathology and flow-cytometry analyses showed that these mice developed accelerated CMML-like phenotypes with higher myeloid cell infiltrations in the bone marrow and spleen as compared to single mutants. However, no cases of AML occurred. Given that CMML is driven by dys-regulated HSC function, we examined stem cell competitiveness, self-renewal and proliferation in double mutant mice at the pre-leukemic stage. The absolute numbers of HSCs in 10-week old double mutant mice were comparable to that observed in wild type (WT) and single mutant mice. However, double mutant HSCsdisplayed significantly enhanced self-renewal potential in colony forming (CFU) replating assays. In vivo competitive serial transplantation assays using either whole bone marrow cells or 15 purified SLAM (CD150+CD48-Lin-Sca1+cKit+) HSCs showed that while single mutant HSCs have increased competitiveness and self-renewal compared to WT HSCs, double mutants have further enhanced HSC competitiveness and self-renewal in primary and secondary transplant recipients. Furthermore, in vivo BrdU incorporation demonstrated that while Nras mutant HSCs had increased proliferation rate, Tet2 mutation significantly reduced the level of HSC proliferation in double mutants. Consistent with this, in vivo H2B-GFP label-retention assays (Liet. al. Nature 2013) in the Col1A1-H2B-GFP;Rosa26-M2-rtTA transgenic mice revealed significantly higher levels of H2B-GFP in Tet2 mutant HSCs, suggesting that Tet2 haploinsufficiency reduced overall HSC cycling. Overall, these findings suggest that hyperactive Nras signaling and Tet2 haploinsufficiency collaborate to enhance HSC competitiveness through distinct functions: N-RasG12D increases HSC self-renewal, proliferation and differentiation, while Tet2 haploinsufficiency reduces HSC proliferation to maintain HSCs in a more quiescent state. Consistent with this, gene expression profiling with RNA sequencing on purified SLAM HSCs indicated thatN-RasG12D and Tet2haploinsufficiencyinduce different yet complementary cellular programs to collaborate in HSC dys-regulation. To fully understand how N-RasG12D and Tet2dose reduction synergistically modulate HSC properties, we examined HSC response to cytokines important for HSC functions. We found that when HSCs were cultured in the presence of low dose stem cell factor (SCF) and thrombopoietin (TPO), only Nras single mutant and Nras/Tet2 double mutant HSCs expanded, but not WT or Tet2 single mutant HSCs. In the presence of TPO and absence of SCF, HSC expansion was only detected in the double mutants. These results suggest that HSCs harboring single mutation of Nras are hypersensitive to cytokine signaling, yet the addition of Tet2 mutation allows for further cytokine independency. Thus, N-RasG12D and Tet2 dose reduction collaborate to promote cytokine signaling. Together, our data demonstrate that hyperactive Nras and Tet2 haploinsufficiency collaborate to alter global HSC gene expression and sensitivity to stem cell cytokines. These events lead to enhanced HSC competitiveness and self-renewal, thus promoting transition toward advanced myeloid malignancy. This model provides a novel platform to delineate how mutations of signaling molecules and epigenetic modifiers collaborate in leukemogenesis, and may identify opportunities for new therapeutic interventions. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 48 (6) ◽  
pp. 2880-2896 ◽  
Author(s):  
Jun Li ◽  
Ting Zhang ◽  
Aarthi Ramakrishnan ◽  
Bernd Fritzsch ◽  
Jinshu Xu ◽  
...  

Abstract The transcription factor Six1 is essential for induction of sensory cell fate and formation of auditory sensory epithelium, but how it activates gene expression programs to generate distinct cell-types remains unknown. Here, we perform genome-wide characterization of Six1 binding at different stages of auditory sensory epithelium development and find that Six1-binding to cis-regulatory elements changes dramatically at cell-state transitions. Intriguingly, Six1 pre-occupies enhancers of cell-type-specific regulators and effectors before their expression. We demonstrate in-vivo cell-type-specific activity of Six1-bound novel enhancers of Pbx1, Fgf8, Dusp6, Vangl2, the hair-cell master regulator Atoh1 and a cascade of Atoh1’s downstream factors, including Pou4f3 and Gfi1. A subset of Six1-bound sites carry consensus-sequences for its downstream factors, including Atoh1, Gfi1, Pou4f3, Gata3 and Pbx1, all of which physically interact with Six1. Motif analysis identifies RFX/X-box as one of the most significantly enriched motifs in Six1-bound sites, and we demonstrate that Six1-RFX proteins cooperatively regulate gene expression through binding to SIX:RFX-motifs. Six1 targets a wide range of hair-bundle regulators and late Six1 deletion disrupts hair-bundle polarity. This study provides a mechanistic understanding of how Six1 cooperates with distinct cofactors in feedforward loops to control lineage-specific gene expression programs during progressive differentiation of the auditory sensory epithelium.


2002 ◽  
Vol 50 (10) ◽  
pp. 1421-1424 ◽  
Author(s):  
Wenbin Ma ◽  
Keith Rogers ◽  
Berton Zbar ◽  
Laura Schmidt

β-Galactosidase (β-Gal) staining is widely used to demonstrate specific gene expression during evaluation of gene targets in vivo. This technique is extremely sensitive to fixation. Optimal fixation conditions are necessary to obtain the maximal β-Gal activity. In this experiment, Carnoy's and three different aldehyde fixatives were used at different temperatures and over different time points. Kidneys from LacZ-stop-human alkaline phosphatase (ZA/P) double reporter mice were used to generate positive material for the experiment. The results show that glutaraldehyde combinative solution (LacZ) produced the most consistent and reliable results. Paraformaldehyde and formaldehyde were effective as fixatives only at 4C for a period of less than 4 hr, and Carnoy's solution destroyed β-Gal activity.


2008 ◽  
Vol 105 (46) ◽  
pp. 18012-18017 ◽  
Author(s):  
Jun Kohyama ◽  
Takuro Kojima ◽  
Eriko Takatsuka ◽  
Toru Yamashita ◽  
Jun Namiki ◽  
...  

Neural stem/progenitor cells (NSCs/NPCs) give rise to neurons, astrocytes, and oligodendrocytes. It has become apparent that intracellular epigenetic modification including DNA methylation, in concert with extracellular cues such as cytokine signaling, is deeply involved in fate specification of NSCs/NPCs by defining cell-type specific gene expression. However, it is still unclear how differentiated neural cells retain their specific attributes by repressing cellular properties characteristic of other lineages. In previous work we have shown that methyl-CpG binding protein transcriptional repressors (MBDs), which are expressed predominantly in neurons in the central nervous system, inhibit astrocyte-specific gene expression by binding to highly methylated regions of their target genes. Here we report that oligodendrocytes, which do not express MBDs, can transdifferentiate into astrocytes both in vitro (cytokine stimulation) and in vivo (ischemic injury) through the activation of the JAK/STAT signaling pathway. These findings suggest that differentiation plasticity in neural cells is regulated by cell-intrinsic epigenetic mechanisms in collaboration with ambient cell-extrinsic cues.


Sign in / Sign up

Export Citation Format

Share Document