scholarly journals Natural epialleles of Arabidopsis SUPERMAN display superwoman phenotypes

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Ramesh Bondada ◽  
Saravanakumar Somasundaram ◽  
Mohan Premanand Marimuthu ◽  
Mohammed Afsal Badarudeen ◽  
Vaishak Kanjirakol Puthiyaveedu ◽  
...  

AbstractEpimutations are heritable changes in gene function due to loss or gain of DNA cytosine methylation or chromatin modifications without changes in the DNA sequence. Only a few natural epimutations displaying discernible phenotypes are documented in plants. Here, we report natural epimutations in the cadastral gene, SUPERMAN(SUP), showing striking phenotypes despite normal transcription, discovered in a natural tetraploid, and subsequently in eleven diploid Arabidopsis genetic accessions. This natural lois lane(lol) epialleles behave as recessive mendelian alleles displaying a spectrum of silent to strong superwoman phenotypes affecting only the carpel whorl, in contrast to semi-dominant superman or supersex features manifested by induced epialleles which affect both stamen and carpel whorls. Despite its unknown origin, natural lol epialleles are subjected to the same epigenetic regulation as induced clk epialleles. The existence of superwoman epialleles in diverse wild populations is interpreted in the light of the evolution of unisexuality in plants.

2009 ◽  
Vol 30 (4) ◽  
pp. 464-470 ◽  
Author(s):  
Xiao-Qiang CHEN ◽  
Chun-Guo WANG ◽  
Xiu-Lan LI ◽  
Wen-Qin SONG ◽  
Rui-Yang CHEN

1984 ◽  
Vol 4 (10) ◽  
pp. 2098-2102
Author(s):  
E Flatau ◽  
F A Gonzales ◽  
L A Michalowsky ◽  
P A Jones

A cell line (T17) was derived from C3H 10T1/2 C18 cells after 17 treatments with increasing concentrations of 5-aza-2'-deoxycytidine. The T17 cell line was very resistant to the cytotoxic effects of 5-aza-2'-deoxycytidine, and the 50% lethal dose for 5-aza-2'-deoxycytidine was ca. 3 microM, which was 30-fold greater than that of the parental C3H 10T1/2 C18 cells. Increased drug resistance was not due to a failure of the T17 cell line to incorporate 5-aza-2'-deoxycytidine into DNA. The cells were also slightly cross-resistant to 5-azacytidine. The percentage of cytosines modified to 5-methylcytosine in T17 cells was 0.7%, a 78% decrease from the level of 3.22% in C3H 10T1/2 C18 cells. The DNA cytosine methylation levels in several clones isolated from the treated lines were on the order of 0.7%, and clones with methylation levels lower than 0.45% were not obtained even after further drug treatments. These highly decreased methylation levels appeared to be unstable, and DNA modification increased as the cells divided in the absence of further drug treatment. The results suggest that it may not be possible to derive mouse cells with vanishingly low levels of 5-methylcytosine and that considerable de novo methylation can occur in cultured lines.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2513-2513
Author(s):  
Xiaochang Liu ◽  
Jiuxia Pang ◽  
Christopher Seiler ◽  
Ryan Kempen ◽  
Hao Liu ◽  
...  

Introduction: It is known that overexpression of DNA methyltransferases (e.g., DNMT1) is frequent and changes of DNA cytosine methylation (5mC) are a constant feature of cancers. DNA methylation inhibitors, such as 5-aza-2'-deoxycytidine (Dec), have been in clinics for patients with leukemia. It is classically believed that promoter hypomethylation coupled by reexpression of epigenetically-suppressed tumor suppressors is a core mechanism behind Dec-impaired leukemia cell growth. However, the fact that global DNA methylation profiling barely predicts Dec-response suggests a demethylation-independent mechanism of Dec-induced cell death. N6-methyladenine (m6A) has been identified recently as an abundant DNA modification in eukaryotes (Wu, Nature 2016;532:329). Importantly, m6A is extensively present in the human genome, and m6A abundance is associated with tumorigenesis (Xie, Cell 2018;71:306). Furthermore, the DNA m6A is dynamically modulated by the methyltransferases (i.e., METTL3, N6AMT1) and demethylases (i.e., ALKBH1), and changes in m6A predict gene expression (Wu, Nature 2016;532:329). Given a potential crosstalk between m6A and distinct epigenetic mechanisms (Yao, Nat. Commun 2017;8:1122), we hypothesized that the anticancer actions of Dec may partially result from changes in DNA m6A in leukemia cells. Methods: Protein expression of target genes was assessed by Western blotting. The levels of DNA cytosine methylation (5mC) and N6-methyladenine (m6A) were measured by dotblotting or liquid chromatography-mass spectrometry (LC-MS/MS). The cell viability and apoptosis were determined by the Cell Counting Kit 8 (CCK8) assays as well as the Annexin V/Propidium Iodide staining and flow cytometry. The peripheral blood mononuclear cells (PBMCs) of leukemia patients from Mayo Clinic were prepared by Ficoll-Hypaque gradient centrifugation. Results: To test our hypothesis, leukemia cells, Kasumi-1, MV4-11, K562 and KU812, were exposed to 2 µM Dec, a clinical achievable concentration, for 72 hours. As expected, Dec treatment led to a downregulation of DNMT1 and DNMT3a, a reduction of 5mC levels by dotblotting using anti-5mC antibody, a blockage of cell proliferation and a promotion of cell apoptosis. When genomic DNA was subjected to dotblotting using anti-m6A antibody, the results revealed a marked decrease of DNA m6A levels in all Dec-treated cells. Then genomic DNA from K562 and MV4-11 cells was enzymatically digested to 2'-deoxynucleosides. dA was quantified by HPLC-UV, while the amount of m6A was measured by isotope dilution HPLC-ESI-MS/MS using 15N labeled internal standard. The standard curves were generated using pure standards, from which the m6A/A ratio was calculated. In agreement with dotblotting results, Dec treatment significantly decreased DNA m6A abundance in both cell lines. Mechanistically, exposure to Dec led to a consistent increase of demethylase fat mass and obesity-associated protein (FTO), but not METTL3 nor ALKBH1 and ALKBH5. Further, knockdown of FTO increased DNA m6A, which was further confirmed by treatment with FTO inhibitors rhein and meclofenamic acid (MA). These data indicate that FTO may be responsible for Dec-induced m6A changes in leukemia cells. To investigate the clinical implications of DNA m6A, we obtained PBMCs from AML patients (n = 10), who received Dec therapy (20 mg/m2 daily for 5 days every 4 weeks) in Mayo Clinic. These PBMCs were further cultured for 48 hours, frozen and stored in 100% ethanol before DNA extraction. The results from dotblotting using anti-5mC or anti-m6A showed that a trend of decrease in both m6A and 5mC abundance is observed, and the pattern of changes in m6A and 5mC displays a positive correlation. Finally, exposure of leukemia cells to the combination of Dec (2 µM) with FTO inhibitor MA (50 µM) induced more cell apoptosis and greater inhibition on cell proliferation as compared to single agent in vitro, supporting FTO inhibitors as new therapeutic agents in leukemia. Conclusion: Our studies suggest that the FTO-DNA m6A axis may partially mediate the therapeutic outcomes of Dec in leukemia. Our findings provide a new mechanistic paradigm for the anticancer activities of Dec, and define the m6A methylation status in leukemia cells as a new pharmacodynamic marker for their response to Dec-based therapy, pointing to a novel treatment strategy for incorporating m6A modulators to enhance the therapeutic index of Dec. Disclosures Al-Kali: Astex Pharmaceuticals, Inc.: Research Funding.


2021 ◽  
Vol 66 (2) ◽  
pp. 263-279
Author(s):  
D. V. Karpenko ◽  
N. A. Petinati ◽  
N. J. Drize ◽  
A. E. Bigildeev

Introduction. Current knowledge of tumour biology attests a dual genetic and epigenetic nature of cancer cell abnormalities. Tumour epigenetics research provided insights into the key pathways mediating oncogenesis and facilitated novel epigenetic therapies.Aim — an overview of intricate involvement of epigenetic change in haematological morbidity and current therapeutic approaches to target the related mechanisms.Main findings. We review the best known epigenetic marks in tumour cells, e.g. DNA cytosine methylation, methylation and acetylation of histone proteins, the underlying enzymatic machinery and its role in oncogenesis. The epigenetic profile-changing drugs are described, including DNA hypomethylating agents, histone deacetylase and methylase inhibitors. A particular focus is made on substances currently approved in haematological therapy or undergoing clinical trial phases for future clinical availability.


2010 ◽  
Vol 285 (25) ◽  
pp. 19434-19449 ◽  
Author(s):  
Valérie Pierard ◽  
Allan Guiguen ◽  
Laurence Colin ◽  
Gaëlle Wijmeersch ◽  
Caroline Vanhulle ◽  
...  

2010 ◽  
Vol 9 (6) ◽  
pp. 783-791 ◽  
Author(s):  
Yun-lei ZHAO ◽  
Shu-xun YU ◽  
Wu-wei YE ◽  
Hong-mei WANG ◽  
Jun-juan WANG ◽  
...  

Author(s):  
Ryan Kyger ◽  
Agusto Luzuriaga-Neira ◽  
Thomas Layman ◽  
Tatiana Orli Milkewitz Sandberg ◽  
Devika Singh ◽  
...  

Abstract DNA cytosine methylation is central to many biological processes, including regulation of gene expression, cellular differentiation, and development. This DNA modification is conserved across animals, having been found in representatives of sponges, ctenophores, cnidarians, and bilaterians, and with very few known instances of secondary loss in animals. Myxozoans are a group of microscopic, obligate endoparasitic cnidarians that have lost many genes over the course of their evolution from free-living ancestors. Here, we investigated the evolution of the key enzymes involved in DNA cytosine methylation in 29 cnidarians and found that these enzymes were lost in an ancestor of Myxosporea (the most speciose class of Myxozoa). Additionally, using whole-genome bisulfite sequencing, we confirmed that the genomes of two distant species of myxosporeans, Ceratonova shasta and Henneguya salminicola, completely lack DNA cytosine methylation. Our results add a notable and novel taxonomic group, the Myxosporea, to the very short list of animal taxa lacking DNA cytosine methylation, further illuminating the complex evolutionary history of this epigenetic regulatory mechanism.


2017 ◽  
Vol 197 (4S) ◽  
Author(s):  
Hidenori Nishio ◽  
Taiki Kato ◽  
Kentaro Mizuno ◽  
Yoshinobu Moritoki ◽  
Hideyuki Kamisawa ◽  
...  

2009 ◽  
Vol 5 (6) ◽  
pp. e1000495 ◽  
Author(s):  
Steven E. Kauder ◽  
Alberto Bosque ◽  
Annica Lindqvist ◽  
Vicente Planelles ◽  
Eric Verdin

Sign in / Sign up

Export Citation Format

Share Document