scholarly journals Artificial hibernation/life-protective state induced by thiazoline-related innate fear odors

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tomohiko Matsuo ◽  
Tomoko Isosaka ◽  
Lijun Tang ◽  
Tomoyoshi Soga ◽  
Reiko Kobayakawa ◽  
...  

AbstractInnate fear intimately connects to the life preservation in crises, although this relationships is not fully understood. Here, we report that presentation of a supernormal innate fear inducer 2-methyl-2-thiazoline (2MT), but not learned fear stimuli, induced robust systemic hypothermia/hypometabolism and suppressed aerobic metabolism via phosphorylation of pyruvate dehydrogenase, thereby enabling long-term survival in a lethal hypoxic environment. These responses exerted potent therapeutic effects in cutaneous and cerebral ischemia/reperfusion injury models. In contrast to hibernation, 2MT stimulation accelerated glucose uptake in the brain and suppressed oxygen saturation in the blood. Whole-brain mapping and chemogenetic activation revealed that the sensory representation of 2MT orchestrates physiological responses via brain stem Sp5/NST to midbrain PBN pathway. 2MT, as a supernormal stimulus of innate fear, induced exaggerated, latent life-protective effects in mice. If this system is preserved in humans, it may be utilized to give rise to a new field: “sensory medicine.”

2020 ◽  
Author(s):  
Tomohiko Matsuo ◽  
Tomoko Isosaka ◽  
Lijun Tang ◽  
Tomoyoshi Soga ◽  
Reiko Kobayakawa ◽  
...  

SummaryTherapeutic hypothermia protects the brain after cardiopulmonary arrest. Innate fear has evolved to orchestrate protective effects in life-threatening situations. Thus, strong fear perception may induce a specialized life-protective metabolism based on hypothermia/hypometabolism; however, such phenomena and their inducers are yet to be elucidated. Here, we report that thiazoline-related fear odors (tFOs), which are TRPA1 agonists and induce robust innate fear in mice, induced hibernation-like systemic hypothermia/hypometabolism, accelerated glucose uptake in the brain, and suppressed aerobic metabolism via phosphorylation of pyruvate dehydrogenase, thereby enabling long-term survival in a lethal hypoxic environment. In contrast to hibernation, during which immune functions are generally suppressed, tFO-stimulation induced a crisis-response immune state characterized by potentiated innate immune functions but suppressed inflammation with anti-hypoxic ability. Collectively, these responses exerted potent therapeutic effects in cutaneous and cerebral ischemia/reperfusion injury models. Whole brain mapping and chemogenetic activation revealed that sensory representation of tFOs orchestrate survival fate via brain stem Sp5/NST to midbrain PBN pathway. TFO-induced strong crisis perception maximizes latent life-protective effects by shifting metabolism to a crisis response mode characterized by hypothermia, hypometabolism and crisis immunity.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Jian-Ping Zhang ◽  
Wei-Jing Zhang ◽  
Miao Yang ◽  
Hua Fang

Abstract Background Propofol, an intravenous anesthetic, was proven to protect against lung ischemia/reperfusion (I/R) injury. However, the detailed mechanism of Propofol in lung I/R injury is still elusive. This study was designed to explore the therapeutic effects of Propofol, both in vivo and in vitro, on lung I/R injury and the underlying mechanisms related to metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/microRNA-144 (miR-144)/glycogen synthase kinase-3β (GSK3β). Methods C57BL/6 mice were used to establish a lung I/R injury model while pulmonary microvascular endothelial cells (PMVECs) were constructed as hypoxia/reperfusion (H/R) cellular model, both of which were performed with Propofol treatment. Gain- or loss-of-function approaches were subsequently employed, followed by observation of cell apoptosis in lung tissues and evaluation of proliferative and apoptotic capabilities in H/R cells. Meanwhile, the inflammatory factors, autophagosomes, and autophagy-related proteins were measured. Results Our experimental data revealed that Propofol treatment could decrease the elevated expression of MALAT1 following I/R injury or H/R induction, indicating its protection against lung I/R injury. Additionally, overexpressing MALAT1 or GSK3β promoted the activation of autophagosomes, proinflammatory factor release, and cell apoptosis, suggesting that overexpressing MALAT1 or GSK3β may reverse the protective effects of Propofol against lung I/R injury. MALAT1 was identified to negatively regulate miR-144 to upregulate the GSK3β expression. Conclusion Overall, our study demonstrated that Propofol played a protective role in lung I/R injury by suppressing autophagy and decreasing release of inflammatory factors, with the possible involvement of the MALAT1/miR-144/GSK3β axis.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Guo Zu ◽  
Jing Guo ◽  
Ningwei Che ◽  
Tingting Zhou ◽  
Xiangwen Zhang

Abstract Ginsenoside Rg1 (Rg1) is one of the major bioactive ingredients in Panax ginseng, and it attenuates inflammation and apoptosis. The aims of our study were to explore the potential of Rg1 for the treatment of intestinal I/R injury and to determine whether the protective effects of Rg1 were exerted through the Wnt/β-catenin signaling pathway. In this study, Rg1 treatment ameliorated inflammatory factors, ROS and apoptosis that were induced by intestinal I/R injury. Cell viability was increased and cell apoptosis was decreased with Rg1 pretreatment following hypoxia/reoxygenation (H/R) in the in vitro study. Rg1 activated the Wnt/β-catenin signaling pathway in both the in vivo and in vitro models, and in the in vitro study, the activation was blocked by DKK1. Our study provides evidence that pretreatment with Rg1 significantly reduces ROS and apoptosis induced by intestinal I/R injury via activation of the Wnt/β-catenin pathway. Taken together, our results suggest that Rg1 could exert its therapeutic effects on intestinal I/R injury through the Wnt/β-catenin signaling pathway and provide a novel treatment modality for intestinal I/R injury.


Author(s):  
Pei Jiang

<p class="lead">In this study, puerarin derivatives were designed by adding an active acetonitrile group that inhibits cyclooxygenase-2 (COX-2) in order to enhance the anti-vascular dementia drug activity. The acetonitrile group was linked to puerarin at the 7/4 'positions by a phenolic hydroxyl to give 7-mono-and 7, 4' di-substituted derivatives of puerarin. These structures were confirmed by <sup>1</sup>H NMR spectroscopy and MS spectroscopy. We compared the affinity of puerarin derivatives and puerarin for cyclooxygenase-2 (COX-2) using molecular docking. In addition, the anti-vascular dementia activity of the developed puerarin derivatives was studied by water maze, novel object recognition, and the determination of inducible nitric oxide synthase (iNOS) enzyme activity at the cerebral cortex of mice. Experimental results showed that the puerarin derivatives have a good affinity for COX-2 with therapeutic effects against vascular dementia. The results of this study suggest that the protective effects of the puerarin derivatives against vascular dementia may be related to suppression of inflammation associated with ischemia-reperfusion injury through inhibition of COX-2.</p>


Sign in / Sign up

Export Citation Format

Share Document