scholarly journals Cells grown in three-dimensional spheroids mirror in vivo metabolic response of epithelial cells

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Simon Lagies ◽  
Manuel Schlimpert ◽  
Simon Neumann ◽  
Astrid Wäldin ◽  
Bernd Kammerer ◽  
...  
2001 ◽  
Vol 7 (S2) ◽  
pp. 580-581
Author(s):  
CA Witz ◽  
S Cho ◽  
VE Centonze ◽  
IA Montoya-Rodriguez ◽  
RS Schenken

Using human peritoneal explants, we have previously demonstrated that endometrial stromal cells (ESCs) and endometrial epithelial cells (EECs) attach to intact mesothelium. Attachment occurs within one hour and mesothelial invasion occurs within 18 hours (Figure 1). We have also demonstrated that, in vivo, the mesothelium overlies a continuous layer of collagen IV (Col IV).More recently we have used CLSM, to study the mechanism and time course of ESC and EEC attachment and invasion through mesothelial monolayers. in these studies, CellTracker® dyes were used to label cells. Mesothelial cells were labeled with chloromethylbenzoylaminotetramethylrhodamine (CellTracker Orange). Mesothelial cells were then plated on human collagen IV coated, laser etched coverslips. Mesothelial cells were cultured to subconfluence. ESCs and EECs, labeled with chloromethylfluorscein diacetate (CellTracker Green) were plated on the mesothelial monolayers. Cultures were examined at 1, 6, 12 and 24 hours with simultaneous differential interference contrast and CLSM.


1993 ◽  
Vol 21 (2) ◽  
pp. 191-195 ◽  
Author(s):  
Knut-Jan Andersen ◽  
Erik Ilsø Christensen ◽  
Hogne Vik

The tissue culture of multicellular spheroids from the renal epithelial cell line LLC-PK1 (proximal tubule) is described. This represents a biological system of intermediate complexity between renal tissue in vivo and simple monolayer cultures. The multicellular structures, which show many similarities to kidney tubules in vivo, including a vectorial water transport, should prove useful for studying the potential nephrotoxicity of drugs and chemicals in vitro. In addition, the propagation of renal epithelial cells as multicellular spheroids in serum-free culture may provide information on the release of specific biological parameters, which may be suppressed or masked in serum-supplemented media.


Author(s):  
Yu Takahashi ◽  
Yu Inoue ◽  
Keitaro Kuze ◽  
Shintaro Sato ◽  
Makoto Shimizu ◽  
...  

Abstract Intestinal organoids better represent in vivo intestinal properties than conventionally used established cell lines in vitro. However, they are maintained in three-dimensional culture conditions that may be accompanied by handling complexities. We characterized the properties of human organoid-derived two-dimensionally cultured intestinal epithelial cells (IECs) compared with those of their parental organoids. We found that the expression of several intestinal markers and functional genes were indistinguishable between monolayer IECs and organoids. We further confirmed that their specific ligands equally activate intestinal ligand-activated transcriptional regulators in a dose-dependent manner. The results suggest that culture conditions do not significantly influence the fundamental properties of monolayer IECs originating from organoids, at least from the perspective of gene expression regulation. This will enable their use as novel biological tools to investigate the physiological functions of the human intestine.


2019 ◽  
Author(s):  
Vlasta Lungova ◽  
Susan Thibeault

Abstract Development of treatments for vocal dysphonia has been inhibited by lack of human vocal fold (VF) mucosa models because of difficulty in procuring VF epithelial cells, epithelial cells’ limited proliferative capacity and absence of cell lines. We report development of engineered VF mucosae from hiPSC, transfected via TALEN constructs for green fluorescent protein, that mimic development of VF epithelial cells in utero. Modulation of FGF signaling achieves stratified squamous epithelium from definitive and anterior foregut derived cultures. Robust culturing of these cells on collagen-fibroblast constructs produces three-dimensional models comparable to in vivo VF mucosa.


2012 ◽  
Vol 303 (8) ◽  
pp. C862-C871 ◽  
Author(s):  
Vinita Takiar ◽  
Kavita Mistry ◽  
Monica Carmosino ◽  
Nicole Schaeren-Wiemers ◽  
Michael J. Caplan

The polarized organization of epithelial cells is required for vectorial solute transport and may be altered in renal cystic diseases. Vesicle integral protein of 17 kDa (VIP17/MAL) is involved in apical vesicle transport. VIP17/MAL overexpression in vivo results in renal cystogenesis of unknown etiology. Renal cystogenesis can occur as a consequence of defects of the primary cilium. To explore the role of VIP17/MAL in renal cystogenesis and ciliogenesis, we examined the polarization and ciliary morphology of wild-type and VIP17/MAL overexpressing Madin-Darby canine kidney renal epithelial cells grown in two-dimensional (2D) and three-dimensional (3D) cyst culture. VIP17/MAL is apically localized when expressed in cells maintained in 2D and 3D culture. VIP17/MAL overexpressing cells produce more multilumen cysts compared with controls. While the distributions of basolateral markers are not affected, VIP17/MAL expression results in aberrant sorting of the apical marker gp135 to the primary cilium. VIP17/MAL overexpression is also associated with shortened or absent cilia. Immunofluorescence analysis performed on kidney sections from VIP17/MAL transgenic mice also demonstrates fewer and shortened cilia within dilated lumens ( P < 0.01). These studies demonstrate that VIP17/MAL overexpression results in abnormal cilium and cyst development, in vitro and in vivo, suggesting that VIP17/MAL overexpressing mice may develop cysts secondary to a ciliary defect.


1996 ◽  
Vol 133 (5) ◽  
pp. 1095-1107 ◽  
Author(s):  
M Sachs ◽  
K M Weidner ◽  
V Brinkmann ◽  
I Walther ◽  
A Obermeier ◽  
...  

Receptor tyrosine kinases play essential roles in morphogenesis and differentiation of epithelia. Here we examined various tyrosine kinase receptors, which are preferentially expressed in epithelia (c-met, c-ros, c-neu, and the keratin growth factor [KGF] receptor), for their capacity to induce cell motility and branching morphogenesis of epithelial cells. We exchanged the ligand-binding domain of these receptors by the ectodomain of trkA and could thus control signaling by the new ligand, NGF. We demonstrate here that the tyrosine kinases of c-met, c-ros, c-neu, the KGF receptor, and trkA, but not the insulin receptor, induced scattering and increased motility of kidney epithelial cells in tissue culture. Mutational analysis suggests that SHC binding is essential for scattering and increased cell motility induced by trkA. The induction of motility in epithelial cells is thus an important feature of various receptor tyrosine kinases, which in vivo play a role in embryogenesis and metastasis. In contrast, only the c-met receptor promoted branching morphogenesis of kidney epithelial cells in three-dimensional matrices, which resemble the formation of tubular epithelia in development. Interestingly, the ability of c-met to induce morphogenesis could be transferred to trkA, when in a novel receptor hybrid COOH-terminal sequences of c-met (including Y14 to Y16) were fused to the trkA kinase domain. These data demonstrate that tubulogenesis of epithelia is a restricted activity of tyrosine kinases, as yet only demonstrated for the c-met receptor. We predict the existence of specific substrates that mediate this morphogenesis signal.


Reproduction ◽  
2019 ◽  
Vol 158 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Meriem Hamdi ◽  
María J Sánchez-Calabuig ◽  
Beatriz Rodríguez-Alonso ◽  
Sandra Bagés Arnal ◽  
Kalliopi Roussi ◽  
...  

During its journey through the oviduct, the bovine embryo may induce transcriptomic and metabolic responses, via direct or indirect contact, from bovine oviduct epithelial cells (BOECs). An in vitro model using polyester mesh was established, allowing the study of the local contact during 48 h between a BOEC monolayer and early embryos (2- or 8-cell stage) or their respective conditioned media (CM). The transcriptomic response of BOEC to early embryos was assessed by analyzing the transcript abundance of SMAD6, TDGF1, ROCK1, ROCK2, SOCS3, PRELP and AGR3 selected from previous in vivo studies and GPX4, NFE2L2, SCN9A, EPSTI1 and IGFBP3 selected from in vitro studies. Moreover, metabolic analyses were performed on the media obtained from the co-culture. Results revealed that presence of early embryos or their CM altered the BOEC expression of NFE2L2, GPX4, SMAD6, IGFBP3, ROCK2 and SCN9A. However, the response of BOEC to two-cell embryos or their CM was different from that observed to eight-cell embryos or their CM. Analysis of energy substrates and amino acids revealed that BOEC metabolism was not affected by the presence of early embryos or by their CM. Interestingly, embryo metabolism before embryo genome activation (EGA) seems to be independent of exogenous sources of energy. In conclusion, this study confirms that early embryos affect BOEC transcriptome and BOEC response was embryo stage specific. Moreover, embryo affects BOEC via a direct contact or via its secretions. However transcriptomic response of BOEC to the embryo did not manifest as an observable metabolic response.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Vlasta Lungova ◽  
Xia Chen ◽  
Ziyue Wang ◽  
Christina Kendziorski ◽  
Susan L. Thibeault

Abstract Development of treatments for vocal dysphonia has been inhibited by lack of human vocal fold (VF) mucosa models because of difficulty in procuring VF epithelial cells, epithelial cells’ limited proliferative capacity and absence of cell lines. Here we report development of engineered VF mucosae from hiPSC, transfected via TALEN constructs for green fluorescent protein, that mimic development of VF epithelial cells in utero. Modulation of FGF signaling achieves stratified squamous epithelium from definitive and anterior foregut derived cultures. Robust culturing of these cells on collagen-fibroblast constructs produces three-dimensional models comparable to in vivo VF mucosa. Furthermore, we demonstrate mucosal inflammation upon exposure of these constructs to 5% cigarette smoke extract. Upregulation of pro-inflammatory genes in epithelium and fibroblasts leads to aberrant VF mucosa remodeling. Collectively, our results demonstrate that hiPSC-derived VF mucosa is a versatile tool for future investigation of genetic and molecular mechanisms underlying epithelium-fibroblasts interactions in health and disease.


1982 ◽  
Vol 95 (1) ◽  
pp. 333-339 ◽  
Author(s):  
G Greenburg ◽  
E D Hay

This study of epithelial-mesenchymal transformation and epithelial cell polarity in vitro reveals that environmental conditions can have a profound effect on the epithelial phenotype, cell shape, and polarity as expressed by the presence of apical and basal surfaces. A number of different adult and embryonic epithelia were suspended within native collagen gels. Under these conditions, cells elongate, detach from the explants, and migrate as individual cells within the three-dimensional lattice, a previously unknown property of well-differentiated epithelia. Epithelial cells from adult and embryonic anterior lens were studied in detail. Elongated cells derived from the apical surface develop pseudopodia and filopodia characteristic of migratory cells and acquire a morphology and ultrastructure virtually indistinguishable from that of mesenchymal cells in vivo. It is concluded from these experiments that the three-dimensional collagen gel can promote dissociation, migration, and acquisition of secretory organelles by differentiated epithelial cells, and can abolish the apical-basal cell polarity characteristic of the original epithelium.


Sign in / Sign up

Export Citation Format

Share Document