scholarly journals Rates of contributory de novo mutation in high and low-risk autism families

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Seungtai Yoon ◽  
Adriana Munoz ◽  
Boris Yamrom ◽  
Yoon-ha Lee ◽  
Peter Andrews ◽  
...  

AbstractAutism arises in high and low-risk families. De novo mutation contributes to autism incidence in low-risk families as there is a higher incidence in the affected of the simplex families than in their unaffected siblings. But the extent of contribution in low-risk families cannot be determined solely from simplex families as they are a mixture of low and high-risk. The rate of de novo mutation in nearly pure populations of high-risk families, the multiplex families, has not previously been rigorously determined. Moreover, rates of de novo mutation have been underestimated from studies based on low resolution microarrays and whole exome sequencing. Here we report on findings from whole genome sequence (WGS) of both simplex families from the Simons Simplex Collection (SSC) and multiplex families from the Autism Genetic Resource Exchange (AGRE). After removing the multiplex samples with excessive cell-line genetic drift, we find that the contribution of de novo mutation in multiplex is significantly smaller than the contribution in simplex. We use WGS to provide high resolution CNV profiles and to analyze more than coding regions, and revise upward the rate in simplex autism due to an excess of de novo events targeting introns. Based on this study, we now estimate that de novo events contribute to 52–67% of cases of autism arising from low risk families, and 30–39% of cases of all autism.

2021 ◽  
Author(s):  
Ying Zhang ◽  
Yanyan Nie ◽  
Yu Mu ◽  
Jie Zheng ◽  
Xiaowei Xu ◽  
...  

Abstract Background:The pathogenic variation of CASK gene can cause CASK related mental disorders. The main clinical manifestations are microcephaly with pontine and cerebellar hypoplasia, X-linked mental disorders with or without nystagmus and FG syndrome. The main pathogenic mechanism is the loss of function of related protein caused by mutation. We reported a Chinese male newborn with a de novo variant in CASK gene. Case presentation:We present an 18-day-old baby with intellectual disability and brain hypoplasia. Whole-exome sequencing was performed, which detected a hemizygous missense mutation c.764G>A of CASK gene. The mutation changed the 255th amino acid from Arg to His. Software based bioinformatics analyses were conducted to infer its functional effect.Conclusions:In this paper, a de novo mutation of CASK gene was reported. Moreover, a detailed description of all the cases described in the literature is reported.CASK mutations cause a variety of clinical phenotypes. Its diagnosis is difficult due to the lack of typical clinical symptoms. Genetic testing should be performed as early as possible if this disease is suspected. This case provides an important reference for the diagnosis and treatment of future cases.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 28-28
Author(s):  
Xiao Li ◽  
Skander Jemaa ◽  
Richard AD Carano ◽  
Thomas Bengtsson ◽  
Joseph N Paulson ◽  
...  

Background: Despite effective first-line (1L) treatment options for patients with NHL almost 40% of patients with diffuse large B cell lymphoma (DLBCL) will have a poor response or disease progression after 1L treatment. In follicular lymphoma (FL) 15-20% of patients experience early relapse, and almost 8% may develop transformation to more aggressive forms of the disease (such as DLBCL) after 1L treatment. More accurate identification of patients at high-risk for a poor prognosis with the standard of care could lead to improved outcomes. Although the International Prognostic Index (IPI) and its FL extension (FLIPI) are often used to stratify patients by prognosis, they have relatively modest sensitivity and specificity for predicting individualized risk. Radiomics is a promising approach to improve upon existing prognostic models because it provides a comprehensive quantification of tumor lesion morphology and texture derived from FDG-PET scans and may provide new and important information about disease biology and progression risk on an individual level. Methods: A collection of 107 radiomics features [pyradiomics v2.20] that describe shape, size or volume and texture of tumor lesions, including complex features that are believed to reflect the underlying biological tumor phenotype and microenvironment, were derived for n=1093 de novo DLBCL patients with available baseline FDG-PET scans from the Phase III GOYA study (NCT01287741) evaluating obinutuzumab plus CHOP chemotherapy (G-CHOP) versus rituximab plus CHOP chemotherapy (R-CHOP) (Vitolo, et al. J Clin Oncol 2017). The same set of features were also extracted from n=451 de novo FL patients with available baseline FDG-PET scans from the Phase III GALLIUM study (NCT01332968) comparing obinutuzumab plus chemotherapy with rituximab plus chemotherapy [Marcus, et al. N Engl J Med 2017]. To investigate the association between the derived radiomics features along with baseline clinical variables and progression-free survival (PFS), a Cox proportional hazard model with L1 regularization was trained and internally validated using the GOYA study. We used a nested Monte Carlo Cross Validation (nMCCV) strategy to train our model and provide high- and low-risk group predictions on held-out samples of data. This modeling strategy allows us to make a group prediction on all GOYA patients while reducing overfitting. To evaluate prognostic performance, we ported the final model trained using the GOYA study (called the Li prognostic model) to the fully independent GALLIUM study. Results: Using our nMCCV approach we identified 11 factors, with an inclusion probability of >50%, that are associated with PFS of DLBCL patients (Figure A). Included within the top features are several image-derived morphometric (i.e. metabolic tumor volume, surface area) and radiomics features (i.e. tumor elongation, NGTDM contrast, GLCM inverse variance). When stratifying patients on the predicted (via majority vote) low-risk vs high-risk groupings we found that our high-risk group had significantly worse prognosis vs the low-risk group (Figure B). In comparison, the high-risk group from the IPI model (defined as IPI > 2) had significantly worse prognosis vs the low-risk group, but the performance was slightly worse than our model (Figure C). PFS probability estimates at 2 and 5 years for predicted high-risk patients was 72.7% [70.0-76.6] and 59.8% [54.8-65.2] (vs 74% [70.0-78.2] and 60.4% [55.1-66.2] for the IPI model). After training and testing in the DLBCL population, we evaluated the prognostic performance of our model in an independent set of FL patients. We found that high-risk FL patients had a significantly worse prognosis than the low-risk group (Figure D). PFS probability estimates at 2 and 5 years for predicted high-risk patients was 77.4% [69.8-85.8] and 48.9% [39.5-60.5] (vs. 80% [0.748-0.856] and 58.3% [51.6-65.9] in the full group). Conclusions: Radiomics features are prognostic in DLBCL and provide a modest improvement in prognostic performance when combined with traditional IPI scores, clinical features, and lab values (vs IPI alone). Our prognostic signature, developed in DLBCL, has significant prognostic performance in an independent dataset of patients with FL. While these results are promising, our FL validation dataset was relatively small and further evidence is required to confirm our findings. Disclosures Li: Genentech, Inc.: Current Employment; F. Hoffmann-La Roche: Current Employment, Current equity holder in publicly-traded company. Jemaa:F. Hoffmann-La Roche: Current equity holder in publicly-traded company; Genentech, Inc.: Current Employment. Carano:F. Hoffmann-La Roche: Current equity holder in publicly-traded company; Genentech, Inc.: Current Employment. Bengtsson:Genentech, Inc.: Current Employment; F. Hoffmann-La Roche: Current equity holder in publicly-traded company. Paulson:F. Hoffmann-La Roche: Current equity holder in private company, Current equity holder in publicly-traded company; Genentech, Inc.: Current Employment. Jansen:F. Hoffmann-La Roche: Current Employment; Molecular Health GmbH: Ended employment in the past 24 months; F. Hoffmann-La Roche, Abbvie, Alphabet, other (non-healthcare), indexed funds and ETFs: Current equity holder in publicly-traded company. Nielsen:F. Hoffmann-La Roche: Current Employment, Current equity holder in publicly-traded company. Hibar:Genentech, Inc.: Current Employment; F. Hoffmann-La Roche: Current equity holder in publicly-traded company.


Science ◽  
2019 ◽  
Vol 363 (6425) ◽  
pp. eaau1043 ◽  
Author(s):  
Bjarni V. Halldorsson ◽  
Gunnar Palsson ◽  
Olafur A. Stefansson ◽  
Hakon Jonsson ◽  
Marteinn T. Hardarson ◽  
...  

Genetic diversity arises from recombination and de novo mutation (DNM). Using a combination of microarray genotype and whole-genome sequence data on parent-child pairs, we identified 4,531,535 crossover recombinations and 200,435 DNMs. The resulting genetic map has a resolution of 682 base pairs. Crossovers exhibit a mutagenic effect, with overrepresentation of DNMs within 1 kilobase of crossovers in males and females. In females, a higher mutation rate is observed up to 40 kilobases from crossovers, particularly for complex crossovers, which increase with maternal age. We identified 35 loci associated with the recombination rate or the location of crossovers, demonstrating extensive genetic control of meiotic recombination, and our results highlight genes linked to the formation of the synaptonemal complex as determinants of crossovers.


2020 ◽  
Vol 62 (1) ◽  
Author(s):  
Joana Gonçalves Pontes Jacinto ◽  
Irene Monika Häfliger ◽  
Anna Letko ◽  
Cord Drögemüller ◽  
Jørgen Steen Agerholm

Abstract Background Congenital bovine chondrodysplasia, also known as bulldog calf syndrome, is characterized by disproportionate growth of bones resulting in a shortened and compressed body, mainly due to reduced length of the spine and the long bones of the limbs. In addition, severe facial dysmorphisms including palatoschisis and shortening of the viscerocranium are present. Abnormalities in the gene collagen type II alpha 1 chain (COL2A1) have been associated with some cases of the bulldog calf syndrome. Until now, six pathogenic single-nucleotide variants have been found in COL2A1. Here we present a novel variant in COL2A1 of a Holstein calf and provide an overview of the phenotypic and allelic heterogeneity of the COL2A1-related bulldog calf syndrome in cattle. Case presentation The calf was aborted at gestation day 264 and showed generalized disproportionate dwarfism, with a shortened compressed body and limbs, and dysplasia of the viscerocranium; a phenotype resembling bulldog calf syndrome due to an abnormality in COL2A1. Whole-genome sequence (WGS) data was obtained and revealed a heterozygous 3513 base pair deletion encompassing 10 of the 54 coding exons of COL2A1. Polymerase chain reaction analysis and Sanger sequencing confirmed the breakpoints of the deletion and its absence in the genomes of both parents. Conclusions The pathological and genetic findings were consistent with a case of “bulldog calf syndrome”. The identified variant causing the syndrome was the result of a de novo mutation event that either occurred post-zygotically in the developing embryo or was inherited because of low-level mosaicism in one of the parents. The identified loss-of-function variant is pathogenic due to COL2A1 haploinsufficiency and represents the first structural variant causing bulldog calf syndrome in cattle. Furthermore, this case report highlights the utility of WGS-based precise diagnostics for understanding congenital disorders in cattle and the need for continued surveillance for genetic disorders in cattle.


2019 ◽  
Author(s):  
Sofia Thunström ◽  
Markus Axelsson

Abstract Background: Missense mutations in SAMD9L gene is associated with ataxia-pancytopenia syndrome (ATXPC), OMIM#159550. Common clinical features in these patients include neurological and hematological symptoms. The phenotype and age of onset is variable. Case Presentation: In this case report whole exome sequencing (WES) revealed a not previously reported de novo variant c.2686T>G, p.(Phe896Val) in SAMD9L in a patient with widespread findings of slow developing pathology in the peripheral and central nervous system. The clinical picture was dominated by neurological symptoms, unlike previously described cases, and in addition dural ectasias and multiple cysts in the brain was observed using magnetic resonance imaging. Conclusions: This case underscores the effect of variable expressivity, i.e. different mutations in the same gene can cause different phenotypes. Keywords: Leukoencephalopathia, demyelinating peripheral neuropathy, dural ectasia explained, de novo mutation, the SAMD9L gene.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadja T. Hofer ◽  
Petronel Tuluc ◽  
Nadine J. Ortner ◽  
Yuliia V. Nikonishyna ◽  
Monica L. Fernándes-Quintero ◽  
...  

Abstract Background There is increasing evidence that de novo CACNA1D missense mutations inducing increased Cav1.3 L-type Ca2+-channel-function confer a high risk for neurodevelopmental disorders (autism spectrum disorder with and without neurological and endocrine symptoms). Electrophysiological studies demonstrating the presence or absence of typical gain-of-function gating changes could therefore serve as a tool to distinguish likely disease-causing from non-pathogenic de novo CACNA1D variants in affected individuals. We tested this hypothesis for mutation S652L, which has previously been reported in twins with a severe neurodevelopmental disorder in the Deciphering Developmental Disorder Study, but has not been classified as a novel disease mutation. Methods For functional characterization, wild-type and mutant Cav1.3 channel complexes were expressed in tsA-201 cells and tested for typical gain-of-function gating changes using the whole-cell patch-clamp technique. Results Mutation S652L significantly shifted the voltage-dependence of activation and steady-state inactivation to more negative potentials (~ 13–17 mV) and increased window currents at subthreshold voltages. Moreover, it slowed tail currents and increased Ca2+-levels during action potential-like stimulations, characteristic for gain-of-function changes. To provide evidence that only gain-of-function variants confer high disease risk, we also studied missense variant S652W reported in apparently healthy individuals. S652W shifted activation and inactivation to more positive voltages, compatible with a loss-of-function phenotype. Mutation S652L increased the sensitivity of Cav1.3 for inhibition by the dihydropyridine L-type Ca2+-channel blocker isradipine by 3–4-fold. Conclusions and limitations Our data provide evidence that gain-of-function CACNA1D mutations, such as S652L, but not loss-of-function mutations, such as S652W, cause high risk for neurodevelopmental disorders including autism. This adds CACNA1D to the list of novel disease genes identified in the Deciphering Developmental Disorder Study. Although our study does not provide insight into the cellular mechanisms of pathological Cav1.3 signaling in neurons, we provide a unifying mechanism of gain-of-function CACNA1D mutations as a predictor for disease risk, which may allow the establishment of a more reliable diagnosis of affected individuals. Moreover, the increased sensitivity of S652L to isradipine encourages a therapeutic trial in the two affected individuals. This can address the important question to which extent symptoms are responsive to therapy with Ca2+-channel blockers.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2522-2522
Author(s):  
Marta Pratcorona ◽  
Mireia Camós ◽  
Montserrat Torrebadell ◽  
Maria Rozman ◽  
Ana Carrió ◽  
...  

Abstract The heterogeneous prognosis of patients with intermediate-risk cytogenetics AML (AML-IR) can be partially clarified by screening of NPM1 mutations (NPMmut) and internal tandem duplication of FLT3 (FLT3-ITD). Nonetheless, additional factors might influence the prognostic effect of these molecular lesions, such as the FLT3-ITD mutant level. Moreover, the optimal post-remission strategy might differ depending on the underlying molecular lesion. In this regard, we analyzed the outcome, according to NPM1 and FLT3 mutations and post-remission therapy given, of a series of patients diagnosed with de novo AML-IR in a single institution who received intensive chemotherapy. Patients were treated following 4 sequential protocols of CETLAM group during the period 1994–2006, consisting of 1 or 2 cycles of standard induction chemotherapy and 1 course of high-dose cytarabine-based consolidation therapy. Thereafter, patients underwent hematopoietic stem cell transplantation (HSCT) according to donor availability and presumed risk (protocols LAM 99 & 2003). NPM1 mutations and FLT3-ITD were screened in diagnostic DNA by PCR amplification followed by Genescan analysis. The ratio between FLT3-ITD and wildtype FLT3 alleles (ITD/wt ratio) was calculated using the area under the peak of corresponding alleles. Overall, 134 patients (51% male; median age, 53; range: 17–70) with AML-IR (normal karyotype, 66%) were studied. NPM1mut and FLT3-ITD were found in 45% and 37% of patients, respectively, with a median ITD/wt ratio of 0.59 (0.045–5.5). After induction regimen, 109 patients (81%) achieved complete response (CR). The only variables predictive of a favorable response were NPMmut (90% vs. 75%; p=0.01) and age <60 (85% vs. 72.5%; p=0.05). After a median follow-up of 69 months, relapse risk (RR) at 5 years was 54% (±5%). RR was higher in patients presenting with hyperleukocytosis (>50 × 109/L), NPMwt, and FLT3-ITD. Interestingly, the prognostic value of FLT3-ITD depended on the relative mutant level, and detection of FLT3-ITD with a low ITD/wt ratio (i.e.,<0.3) did not increase the risk conferred by underlying NPM1 mutational status. In accordance, a composite variable based on NPMmut and quantitative FLT3-ITD was created defining 2 prognostic categories: a low-risk group (LOWmol), constituted by patients with NPMmut and either absence of FLT3-ITD or low ITD/wt ratio, and a high-risk subset (HIGHmol), defined by the absence of NPMmut and/or high ITD/wt ratio. This molecular stratification showed independent prognostic value for RR (5-year RR: 24%±10% vs. 81%±7 in LOWmol vs. HIGHmol patients, respectively; p<0.001), and survival (OS; relative risk: 2.8, 95% CI:1.6-5, p<0.001; figure Moreover, the effect of post-remission therapy varied in both molecular-defined subgroups. Thus, among patients with an age ≤60, 5-year survival in LOWmol patients with a planned autologous HSCT (autoHSCT) was 83%±9%, not differing significantly from that of patients undergoing allogeneic HSCT (intention-to-treat analysis; figure On the other hand, 5-year OS of HIGHmol patients who underwent allogeneic HSCT in first CR was 73%±13, which compared favorably with other post-remission strategies (5-yr OS: 27%±7%; p=0.019). In conclusion, in patients with intermediate-risk AML, the combined assessment of NPM1 mutations and quantitative estimation of FLT3-ITD allows the distinction of 2 categories of patients with different prognosis. Thus, whereas autoHSCT arises as an effective postremission therapy in patients harboring low-risk molecular features, allogeneic HSCT in first CR seems to overcome adverse prognosis of patients with high-risk disease. Nonetheless, the validity of this molecularly-based therapeutic algorithm warrants confirmation in other studies. Figure Figure


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 307-307
Author(s):  
Inés Gómez-Seguí ◽  
Bartlomiej P Przychodzen ◽  
Kenichi Yoshida ◽  
Matthew Ruffalo ◽  
Andres Jerez ◽  
...  

Abstract Abstract 307 Whole-exome (WES) sequencing revealed tremendous mutational heterogeneity in leukemia. While WES can be applied for discovery, it also has potential as a diagnostic tool that can overcome the shortcomings of current methods. We theorized that, in addition to mutation discovery, systematic application of WES in MDS may reveal distinct mutational patterns allowing for new molecular classification. We performed WES in 116 paired exomes, including MDS (n=57), MDS/MPN (n=36), and sAML (n=23). We also included comparative analysis with pAML (N=202; TCGA), and other publicly available data for a total of 333 exomes; 10 patients were studied serially. Paired DNA (marrow/CD3+ cells) was subjected to WES, sequence-aligned by BW Aligner, and variants detected via GATK pipeline (Broad Institute). We used defined criteria to minimize false-positives: P<.001 tumor/control, alterations ≥10% of total tumor reads, <25% in germline, >5% prevalence, and not found in ex/internal SNP databases. This narrowed the spectrum to 645 mutations (54 genes) for analysis with clinical/phenotypic correlations. Mutations were isolated or grouped by pathway, e.g., PRC2, cohesin complex, plexins and dyneins, etc. In MDS, examples of prevalent mutations include SF3B1 (14%), DNMT3A (11%) and U2AF1/2 (9%). In MDS/MPN: TET2 (36%), SRSF2 (22%) and ASXL1 (19%) and SETBP1 (6%); in sAML: NRAS/RAS (16%), RUNX1 (16%) and cohesin mutations (12%), in contrast to pAML with mutational spectrum dominated by FLT3, DNMT3A, NMP1 or SMC3/1A (cohesin complex). The exome panel did not cover 20% patients, suggesting that their pathogenesis may be related to less recurrent events (613 candidates: 2nd screening phase). When mutational spectrum of sAML vs pAML were compared, mutants of SF3B1 (7 vs 1%, P=.04), BCOR (7 vs 1%, P=.04), CDH11/23 (13 vs. 1%, P=.003), FMN2 (7 vs. 1%, P=.04), PPFIA2 (7% vs 0%, P=.01), SPTAN1 (7% vs 0%, P=.01) and VPS8 (7 vs 0%, P=.017) were more frequent in sAML while DNMT3A and NPM1 were less common. Analysis of MDS/MPN revealed mutations in PRC2 (2 vs 11%, P=.05), SRSF2 (5 vs. 22%, P=.010) and TET2 (3 vs. 33%, P<.001) more frequent than in MDS. Mutations in SF3B1 were more recurrent in low/Int-1 IPSS categories compared to Int-2/high/sAML (21 vs. 3%, P=.01), in which mutations in N/KRAS (0 vs. 14%, P=.01) and TP53 (0 vs. 14%, P=.01) were more frequent. Functional group comparisons revealed that lesions in epigenetic (56 vs 23%, P=.001) and signal transduction genes (36 vs 9%, P=.001) were more prevalent in MDS/MPN compared to MDS in which they accumulated according to risk (high vs low: 36 vs 5%, P=.001 or 52% in pAML). Spliceosomal mutations were overrepresented in MDS/MPN vs MDS (58 vs 37%, P=.031), in sAML vs pAML (23 vs 9%, P=.032), and in low risk vs high risk cases (45 vs 22%, P=.02). Cytoskeleton organization gene mutations were overrepresented in sAML vs pAML (39 vs 13%, P=.001). TSG were more frequent in high-risk vs low-risk MDS (30 vs 5%, P=.003). Moreover, TET2 mutations coincided with SRSF2 and PRC2 mutations (P<.001 and P=.010); DNMT3 mutations with SF3B1 and BCOR (P=.04 and P=.004); SRSF2 with ASXL1 (P=.017); RUNX1 with cohesin and BCOR (P=.003 and P=.04), CBL mutations with PRPF8 and ASXL1 (P=.04 or P=.003); TP53 with PRPF8 (P=.04). After analyzing survival impact of individual mutations, functional groups, cytogenetic category and clinical parameters, we found TP53, ETV6, PRPF8, FMN2, UMODL1, KIT, GATA2, complex karyotype and chr. 5 anomalies had a prognostic impact on OS. However, in multivariate analyses, the first variable to stratify our cohort was, as expected, the diagnosis subtype (HR 2.2, P<.001), but also mutations in PRPF8 (HR 5.4, P=.004). In MDS and grouped MDS/MPN, significant variables included KIT (HR 12, P=.022) and TP53 mutations (HR 3.6, P=.045). Apart from traditional analyses, we also applied a recursive partitioning algorithm to construct an unbiased survival tree encompassing every mutation: e.g., PRPF8, CSMD1, U2AF2, IDH2, PPFIA2, SF3B1 and NRAS showed the highest difference in OS with this method. In sum, mutational spectrum of myeloid neoplasms can be assessed with WES. The pattern of frequency and concurrence in each diagnostic subtype differs substantially, a feature that can be exploited diagnostically. Despite heterogeneity, mutations and their combinations can be found to categorize patients and serve as prognostic markers. Analysis of additional cases is ongoing and will be presented at the meeting. Disclosures: Makishima: Scott Hamilton CARES Initiative: Research Funding. Maciejewski:NIH: Research Funding; Aplastic Anemia&MDS International Foundation: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2892-2892 ◽  
Author(s):  
Cecile Bally ◽  
Jacqueline Lehmann-Che ◽  
Bruno Cassinat ◽  
Lionel Ades ◽  
Eric Letouze ◽  
...  

Abstract Background : APL is, in the vast majority of cases, driven by t(15 ;17) translocation, which leads to PML/RARA rearrangement. Remarkably, APL is an uncommon genetically simple disease and only few additional alterations, cooperating with PML/RAR, have been described at diagnostic (Welch et al, Cell 2012). Most APL can be cured with targeted therapy combining all-trans retinoic acid (ATRA) and chemotherapy (CT). However, genetic mechanisms underlying the 10-15% relapses observed with this regimen remain unclear. The goal of the present study was to identify mutations that cooperate with PML/RAR and those responsible for acquired resistance to ATRA-CT treatment in APL patients by whole-exome sequencing of diagnostic/ remission/relapse trios. Methods: Newly diagnosed APL patients included in clinical trials of the French Swiss Belgian APL group between 1994 and 2008, treated with ATRA-CT, before the introduction of first-line ATO, who experienced at least one relapse and had adequate material, were studied. We collected retrospectively 64 samples from 23 patients, including 23 diagnostic samples, 18 at first complete remission (CR) and 23 at relapse (22 first relapse and 1 second relapse). Whole exome-sequencing was performed on all samples. DNA libraries were prepared with the SureSelect human v5 kit (Agilent) and sequenced on Hiseq1000 (Illumina). The bioinformatic analysis was performed by GECO/integragen using CASAVA variant calling (Illumina) and dedicated pipeline. 18 trios and 5 duos passed the stringent quality control and were analyzed for somatic variants and copy number variations (CNV). Results : After elimination of polymorphisms, the median number of somatic variants corresponding to de novo mutation at diagnosis was 14, while only 3 new somatic variants appeared at relapse (figure 1). Notably, we failed to detect oncogene alterations other than PML/RARA in 7/23 (30%) patients. At diagnostic, 39% of patients (9/23) presented the common FLT3 alterations and at relapse 22% (5/23) of patients presented the known RARA mutations. Moreover, recurrent alterations were observed in activators of the MAPK signaling (22%): NRAS (2 patients), BRAF (1 patient), KRAS (1 patient), SPRY1 (1 patient). Mutations in the NT5C2 gene (3 patients), coding a 5'nucleotidase implicated in resistance to nucleoside-analog therapy, were solely observed at relapse, as in acute lymphoblastic leukemia (ALL). Abnormalities of epigenetic regulators were also detected at diagnostic and/or relapse: WT1 (7 patients, 30%), NSD1 (2 patients), TET2 (1 patient), ASXL1 (1 patient) and MED12 (2 patients). Homozygote WT1 inactivation by mutation plus neutral copy LOH occurred in 3 patients at relapse. The genetic markers identified allowed us to construct several evolution models. In 8 patients (35%), the diagnostic and relapse clones were clearly distinct, supporting the fact that they independently derived from pre-leukemic cells that survived ATRA/chemotherapy. In contrast, other relapses appeared to derive from the diagnostic clone. Conclusion: Our data highlight the genetic simplicity of APL with very few alterations detected and 30% patients without identified mutations in addition to PML/RARa. Our results support the existence of two prototypic mechanisms of relapse: re-emergence of a new APL from persisting pre-leukemic cells and relapse from APLs often expressing strong oncogenes at diagnosis, impeding therapy response and favoring the acquisition of resistance mutations at relapse, including PML/RARA or NT5C2. It will be interesting to assess the prevalence of those two mechanisms in the exceptional cases of relapse in patients treated with more recent frontline regimens that combine ATRA and arsenic in APL. Disclosures Ades: Celgene, Takeda, Novartis, Astex: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Fenaux:Celgene, Janssen,Novartis, Astex, Teva: Honoraria, Research Funding.


2019 ◽  
Vol 50 (06) ◽  
pp. 378-381
Author(s):  
Daniel Bamborschke ◽  
Matthias Pergande ◽  
Hülya Sevcan Daimagüler ◽  
Elisabeth Mangold ◽  
Jörg Dötsch ◽  
...  

Mutations in GABAA-receptor subunit genes are associated with a heterogeneous spectrum of epilepsies. Patients with epilepsy caused by mutations in a specific GABAA-receptor (GABRA3) occasionally present with orofacial dysmorphism (e.g., cleft palates). While cleft palates have been described in Gabrb3 knockout mice and in humans with GABRB3 variants without epilepsy, the specific combination of epilepsy and cleft palate in humans with GABRB3 mutations has not yet been reported.We describe a patient with epileptic encephalopathy (EE) who presented with therapy-refractory neonatal-onset myoclonic seizures and severe developmental delay. Electroencephalogram showed burst suppression pattern at neonatal age and hypsarrhythmia at infantile age. Initial magnetic resonance imaging was unremarkable. As he additionally presented with a cleft palate, we were curious whether cleft palate and EE had the same genetic origin. Whole exome sequencing of the index patient revealed a novel pathogenic heterozygous de novo mutation in GABRB3 (c.899T > C; p.I300T). In consistency with Gabrb3 knockout mice data, this is the first report of cleft palate in a patient with GABRB3 associated EE.We suggest to add cleft palate to the phenotypic GABRB3 spectrum and to screen for mutations in GABAA-receptors in patients with EE and orofacial dysmorphism.


Sign in / Sign up

Export Citation Format

Share Document