scholarly journals Protein nanofibril design via manipulation of hydrogen bonds

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nidhi Aggarwal ◽  
Dror Eliaz ◽  
Hagai Cohen ◽  
Irit Rosenhek-Goldian ◽  
Sidney R. Cohen ◽  
...  

AbstractThe process of amyloid nanofibril formation has broad implications including the generation of the strongest natural materials, namely silk fibers, and their major contribution to the progression of many degenerative diseases. The key question that remains unanswered is whether the amyloidogenic nature, which includes the characteristic H-bonded β-sheet structure and physical characteristics of protein assemblies, can be modified via controlled intervention of the molecular interactions. Here we show that tailored changes in molecular interactions, specifically in the H-bonded network, do not affect the nature of amyloidogenic fibrillation, and even have minimal effect on the initial nucleation events of self-assembly. However, they do trigger changes in networks at a higher hierarchical level, namely enhanced 2D packaging which is rationalized by the 3D hierarchy of β-sheet assembly, leading to variations in fibril morphology, structural composition and, remarkably, nanomechanical properties. These results pave the way to a better understanding of the role of molecular interactions in sculpting the structural and physical properties of protein supramolecular constructs.

2017 ◽  
Vol 7 (6) ◽  
pp. 20160141 ◽  
Author(s):  
Tao Jiang ◽  
Elizabeth L. Magnotti ◽  
Vincent P. Conticello

Two-dimensional peptide and protein assemblies have been the focus of increased scientific research as they display significant potential for the creation of functional nanomaterials. Soluble subunits derived from a variety of protein motifs have been demonstrated to self-assemble into structurally defined nanosheets under environmentally benign conditions in which the components often retain their native structure and function. These types of two-dimensional assemblies may have an advantage for nanofabrication in that their extended planar shapes can be more straightforwardly incorporated into the current formats of nanoscale devices. However, significant challenges remain in the fabrication of these materials, particularly in devising methods to control the size, shape and internal structure of the resultant materials. Geometrical frustration may be envisioned as a possible mechanism to exert control over these structural parameters through rational design. While this objective has yet to be realized in practice, we discuss in this article the potential role of geometrical frustration as a principle to rationalize unusual self-assembly behaviour in several examples of two-dimensional peptide assemblies.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Chun Yin Jerry Lau ◽  
Federico Fontana ◽  
Laurens D. B. Mandemaker ◽  
Dennie Wezendonk ◽  
Benjamin Vermeer ◽  
...  

AbstractSelf-assembling peptides are an exemplary class of supramolecular biomaterials of broad biomedical utility. Mechanistic studies on the peptide self-assembly demonstrated the importance of the oligomeric intermediates towards the properties of the supramolecular biomaterials being formed. In this study, we demonstrate how the overall yield of the supramolecular assemblies are moderated through subtle molecular changes in the peptide monomers. This strategy is exemplified with a set of surfactant-like peptides (SLPs) with different β-sheet propensities and charged residues flanking the aggregation domains. By integrating different techniques, we show that these molecular changes can alter both the nucleation propensity of the oligomeric intermediates and the thermodynamic stability of the fibril structures. We demonstrate that the amount of assembled nanofibers are critically defined by the oligomeric nucleation propensities. Our findings offer guidance on designing self-assembling peptides for different biomedical applications, as well as insights into the role of protein gatekeeper sequences in preventing amyloidosis.


2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
Antonietta Pepe ◽  
Florian Delaunay ◽  
Angelo Bracalello ◽  
Brigida Bochicchio

The role of polyphenols in the prevention of degenerative diseases is emerging in the last years. In this report, we will investigate in vitro the inhibitory effect of resveratrol on elastin amyloidogenesis. The effect of resveratrol on molecular structure was investigated by circular dichroism spectroscopy, while the inhibitory effect on self-assembly was evaluated by turbidimetry as a function of temperature and by atomic force microscopy.


2010 ◽  
Vol 132 (12) ◽  
pp. 4230-4241 ◽  
Author(s):  
Emilie Pouget ◽  
Nicolas Fay ◽  
Erik Dujardin ◽  
Nadège Jamin ◽  
Patrick Berthault ◽  
...  

Open Biology ◽  
2011 ◽  
Vol 1 (3) ◽  
pp. 110013 ◽  
Author(s):  
Carolina Mendoza-Topaz ◽  
Juliusz Mieszczanek ◽  
Mariann Bienz

Most cases of colorectal cancer are linked to mutational inactivation of the Adenomatous polyposis coli (APC) tumour suppressor. APC downregulates Wnt signalling by enabling Axin to promote the degradation of the Wnt signalling effector β-catenin (Armadillo in flies). This depends on Axin's DIX domain whose polymerization allows it to form dynamic protein assemblies (‘degradasomes’). Axin is inactivated upon Wnt signalling, by heteropolymerization with the DIX domain of Dishevelled, which recruits it into membrane-associated ‘signalosomes’. How APC promotes Axin's function is unclear, especially as it has been reported that APC's function can be bypassed by overexpression of Axin. Examining apc null mutant Drosophila tissues, we discovered that APC is required for Axin degradasome assembly, itself essential for Armadillo downregulation. Degradasome assembly is also attenuated in APC mutant cancer cells. Notably, Axin becomes prone to Dishevelled-dependent plasma membrane recruitment in the absence of APC, indicating a crucial role of APC in opposing the interaction of Axin with Dishevelled. Indeed, co-expression experiments reveal that APC displaces Dishevelled from Axin assemblies, promoting degradasome over signalosome formation in the absence of Wnts. APC thus empowers Axin to function in two ways—by enabling its DIX-dependent self-assembly, and by opposing its DIX-dependent copolymerization with Dishevelled and consequent inactivation.


2020 ◽  
Vol 27 (9) ◽  
pp. 923-929
Author(s):  
Gaurav Pandey ◽  
Prem Prakash Das ◽  
Vibin Ramakrishnan

Background: RADA-4 (Ac-RADARADARADARADA-NH2) is the most extensively studied and marketed self-assembling peptide, forming hydrogel, used to create defined threedimensional microenvironments for cell culture applications. Objectives: In this work, we use various biophysical techniques to investigate the length dependency of RADA aggregation and assembly. Methods: We synthesized a series of RADA-N peptides, N ranging from 1 to 4, resulting in four peptides having 4, 8, 12, and 16 amino acids in their sequence. Through a combination of various biophysical methods including thioflavin T fluorescence assay, static right angle light scattering assay, Dynamic Light Scattering (DLS), electron microscopy, CD, and IR spectroscopy, we have examined the role of chain-length on the self-assembly of RADA peptide. Results: Our observations show that the aggregation of ionic, charge-complementary RADA motifcontaining peptides is length-dependent, with N less than 3 are not forming spontaneous selfassemblies. Conclusion: The six biophysical experiments discussed in this paper validate the significance of chain-length on the epitaxial growth of RADA peptide self-assembly.


2019 ◽  
Vol 4 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Ryan T. Shafranek ◽  
Joel D. Leger ◽  
Song Zhang ◽  
Munira Khalil ◽  
Xiaodan Gu ◽  
...  

Directed self-assembly in polymeric hydrogels allows tunability of thermal response and viscoelastic properties.


2021 ◽  
Author(s):  
Beatriz Matarranz ◽  
Goutam Ghosh ◽  
Ramesh Kandanelli ◽  
Angel Sampedro ◽  
Kalathil K. Kartha ◽  
...  

We unravel the relationship between conjugation length and self-assembly behaviour of oligophenyleneethynylenes (OPEs).


Sign in / Sign up

Export Citation Format

Share Document