peptide fibrils
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 11)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Dean Edun ◽  
Olivia Cracchiolo ◽  
Arnaldo Serrano

The coupled amide-I vibrational modes in peptide systems such as fibrillar aggregates can often provide a wealth of structural information, though the associated spectra can be difficult to interpret. Using exciton scattering calculations, we characterized the polarization selective 2DIR peak patterns for cross-α peptide fibrils, a challenging system given the similarity between the monomeric and fibrillar structures, and interpret the results in light of recently collected 2D data on the cross-α peptide PSMα3. We find that stacking of α-helices into fibrils couples the bright modes across helical subunits, generating three new Bloch-like extended excitonic states that we designate A⏊, E∥, and E⏊. Coherent superpositions of these states in broad-band 2DIR simulations lead to characteristic signals that are sensitive to fibril length, and match the experimental 2DIR spectra.


2021 ◽  
Vol 22 (8) ◽  
pp. 3818
Author(s):  
Justyna Sawicka ◽  
Emilia Iłowska ◽  
Milena Deptuła ◽  
Paweł Sosnowski ◽  
Piotr Sass ◽  
...  

Technological developments in the field of biologically active peptide applications in medicine have increased the need for new methods for peptide delivery. The disadvantage of peptides as drugs is their low biological stability. Recently, great attention has been paid to self-assembling peptides that can form fibrils. Such a formulation makes bioactive peptides more resistant to enzymatic degradation and druggable. Peptide fibrils can be carriers for peptides with interesting biological activities. These features open up prospects for using the peptide fibrils as long-acting drugs and are a valid alternative to conventional peptidic therapies. In our study, we designed new peptide scaffolds that are a hybrid of three interconnected amino acid sequences and are: pro-regenerative, cleavable by neutrophilic elastase, and fibril-forming. We intended to obtain peptides that are stable in the wound environment and that, when applied, would release a biologically active sequence. Our studies showed that the designed hybrid peptides show a high tendency toward regular fibril formation and are able to release the pro-regenerative sequence. Cytotoxicity studies showed that all the designed peptides were safe, did not cause cytotoxic effects and revealed a pro-regenerative potential in human fibroblast and keratinocyte cell lines. In vivo experiments in a dorsal skin injury model in mice indicated that two tested peptides moderately promote tissue repair in their free form. Our research proves that peptide fibrils can be a druggable form and a scaffold for active peptides.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jon Pallbo ◽  
Masayuki Imai ◽  
Luigi Gentile ◽  
Shin-ichi Takata ◽  
Ulf Olsson ◽  
...  

Amyloids are implicated in many diseases, and disruption of lipid membrane structures is considered as one possible mechanism of pathology. In this paper we investigate interactions between an aggregating peptide and phospholipid membranes, focusing on the nanometer-scale structures of the aggregates formed, as well as on the effect on the aggregation process. As a model system, we use the small amyloid-forming peptide named NACore, which is a fragment of the central region of the protein α-synuclein that is associated with Parkinson’s disease. We find that phospholipid vesicles readily associate with the amyloid fibril network in the form of highly distorted and trapped vesicles that also may wet the surface of the fibrils. This effect is most pronounced for model lipid systems containing only zwitterionic lipids. Fibrillation is found to be retarded by the presence of the vesicles. At the resolution of our measurements, which are based mainly on cryogenic transmission electron microscopy (cryo-TEM), X-ray scattering, and circular dichroism (CD) spectroscopy, we find that the resulting aggregates can be well fitted as linear combinations of peptide fibrils and phospholipid bilayers. There are no detectable effects on the cross-β packing of the peptide molecules in the fibrils, or on the thickness of the phospholipid bilayers. This suggests that while the peptide fibrils and lipid bilayers readily co-assemble on large length-scales, most of them still retain their separate structural identities on molecular length-scales. Comparison between this relatively simple model system and other amyloid systems might help distinguish aspects of amyloid-lipid interactions that are generic from aspects that are more protein specific. Finally, we briefly consider possible implications of the obtained results for in-vivo amyloid toxicity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wei-Hsuan Tseng ◽  
Szu-Hua Chen ◽  
Hirotsugu Hiramatsu

AbstractPeptides provide a framework for generating functional biopolymers. In this study, the pH-dependent structural changes in the 21–29 fragment peptide of β2-microglobulin (β2m21–29) during self-aggregation, i.e., the formation of an amyloid fibril, were discussed. The β-sheet structures formed during parallel stacking under basic conditions (pH ≥ 7.7) adopted an anti-parallel stacking configuration under acidic conditions (pH ≤ 7.6). The parallel and anti-parallel β-sheets existed separately at the intermediate pH (pH = 7.6–7.7). These results were attributed to the rigidity of the β-sheets in the fibrils, which prevented the stable hydrogen bonding interactions between the parallel and anti-parallel β-sheet moieties. This observed pH dependence was ascribed to two phenomena: (i) the pH-dependent collapse of the β2m21–29 fibrils, which consisted of 16 ± 3 anti-parallel β-sheets containing a total of 2000 β-strands during the deprotonation of the NH3+ group (pKa = 8.0) of the β-strands that occurred within 0.7 ± 0.2 strands of each other and (ii) the subsequent formation of the parallel β-sheets. We propose a framework for a functional biopolymer that could alternate between the two β-sheet structures in response to pH changes.


2020 ◽  
Vol 39 ◽  
pp. 100325 ◽  
Author(s):  
Huy Minh Dao ◽  
Sanjiv Parajuli ◽  
Esteban Urena-Benavides ◽  
Seongbong Jo

2020 ◽  
Vol 21 (20) ◽  
pp. 7671
Author(s):  
Mona Koder Hamid ◽  
Axel Rüter ◽  
Stefan Kuczera ◽  
Ulf Olsson

Understanding the kinetics of peptide self-assembly is important because of the involvement of peptide amyloid fibrils in several neurodegenerative diseases. In this paper, we have studied the dissolution kinetics of self-assembled model peptide fibrils after a dilution quench. Due to the low concentrations involved, the experimental method of choice was isothermal titration calorimetry (ITC). We show that the dissolution is a strikingly slow and reaction-limited process, that can be timescale separated from other rapid processes associated with dilution in the ITC experiment. We argue that the rate-limiting step of dissolution involves the breaking up of inter-peptide β–sheet hydrogen bonds, replacing them with peptide–water hydrogen bonds. Complementary pH experiments revealed that the self-assembly involves partial deprotonation of the peptide molecules.


2019 ◽  
Vol 18 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Chul Ju Hwang ◽  
Dong-Young Choi ◽  
Mi Hee Park ◽  
Jin Tae Hong

Alzheimer’s disease is the most common form of dementia. It is characterized by betaamyloid peptide fibrils which are extracellular deposition of a specific protein, accompanied by extensive neuroinflammation. Various studies show the presence of a number of inflammation markers in the AD brain: elevated inflammatory cytokines and chemokines, and an accumulation of activated microglia in the damaged regions. NF-κB is a family of redox sensitive transcriptional factors, and it is known that NF-κB has binding sites in the promoter region of the genes involved in amyloidogenesis and inflammation. Long-term use of non-steroidal anti-inflammatory drugs prevents progression of AD and delays its onset, suggesting that there is a close correlation between NF-κB and AD pathogenesis. This study aims to (1) assess the association between NF-κB activity and AD through discussion of a variety of experimental and clinical studies on AD and (2) review treatment strategies designed to treat or prevent AD with NF-κB inhibitors.


Sign in / Sign up

Export Citation Format

Share Document