scholarly journals Pressure-induced Anderson-Mott transition in elemental tellurium

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Jaime F. Oliveira ◽  
Magda B. Fontes ◽  
Marcus Moutinho ◽  
Stephen E. Rowley ◽  
Elisa Baggio-Saitovitch ◽  
...  

AbstractElemental tellurium is a small band-gap semiconductor, which is always p-doped due to the natural occurrence of vacancies. Its chiral non-centrosymmetric structure, characterized by helical chains arranged in a triangular lattice, and the presence of a spin-polarized Fermi surface, render tellurium a promising candidate for future applications. Here, we use a theoretical framework, appropriate for describing the corrections to conductivity from quantum interference effects, to show that a high-quality tellurium single crystal undergoes a quantum phase transition at low temperatures from an Anderson insulator to a correlated disordered metal at around 17 kbar. Such insulator-to-metal transition manifests itself in all measured physical quantities and their critical exponents are consistent with a scenario in which a pressure-induced Lifshitz transition shifts the Fermi level below the mobility edge, paving the way for a genuine Anderson-Mott transition. We conclude that previously puzzling quantum oscillation and transport measurements might be explained by a possible Anderson-Mott ground state and the observed phase transition.

2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Shan-Quan Lan ◽  
Gu-Qiang Li ◽  
Jie-Xiong Mo ◽  
Xiao-Bao Xu

The topological charge ϵ of AdS black hole is introduced by Tian et al. in their papers, where a complete thermodynamic first law is obtained. In this paper, we investigate a new phase transition related to the topological charge in Einstein-Maxwell theory. Firstly, we derive the explicit solutions corresponding to the divergence of specific heat Cϵ and determine the phase transition critical point. Secondly, the T-r curve and T-S curve are investigated and they exhibit an interesting van der Waals system’s behavior. Critical physical quantities are also obtained which are consistent with those derived from the specific heat analysis. Thirdly, a van der Waals system’s swallow tail behavior is observed when ϵ>ϵc in the F-T graph. What is more, the analytic phase transition coexistence lines are obtained by using the Maxwell equal area law and free energy analysis, the results of which are consistent with each other.


2015 ◽  
Vol 107 (8) ◽  
pp. 082408 ◽  
Author(s):  
Ippei Suzuki ◽  
Tomoyuki Naito ◽  
Mitsuru Itoh ◽  
Tomoyasu Taniyama

2020 ◽  
Vol 35 (31) ◽  
pp. 2050258
Author(s):  
Aloke Kumar Sinha

We had earlier derived the most general criteria for thermal stability of a quantum black hole, with arbitrary number of parameters, in any dimensional spacetime. These conditions appeared in form of a series of inequalities connecting second order derivatives of black hole mass with respect to its parameters. Some black holes like asymptotically flat rotating charged black holes do not satisfy all the stability criteria simultaneously, but do satisfy some of them in certain region of parameter space. They are known as “Quasi Stable” black holes. In this paper, we will show that quasi stable black holes although ultimately decay under Hawking radiation undergo phase transitions. These phase transitions are different from phase transition in ADS Schwarzschild black hole. These are marked by sign changes in certain physical quantities apart from specific heat of the black hole. We will also discuss the changes in the nature of fluctuations of the parameters of these quasi stable black holes with different phases.


2007 ◽  
Vol 18 (07) ◽  
pp. 1107-1117
Author(s):  
FATIH YAŞAR

Monte Carlo simulations using the recently proposed Wang–Landau algorithm are performed to the q = 8 state Potts model in two dimension with various degrees of randomness. We systematically studied the effect of quenched bond randomness to system which has first-order phase transition. All simulations and measurements were done from pure case r = 1 to r = 0.4. Physical quantities such as energy density and ground-state entropy were evaluated at all temperatures. We have also obtained probability distributions of energy to monitor softening of transitions. It appears quite feasible to simulate spin systems with quenched bond randomness by Wang–Landau algorithm.


2014 ◽  
Vol 1047 ◽  
pp. 155-161
Author(s):  
Archana Singh ◽  
Mahendra Aynyas ◽  
S.P. Sanyal

We report a first principles calculation of pressure-induced structural phase transition properties of uranium chalcogenides (UX; X=S, Se and Te). The total energies as a function of volume are obtained by means of self-consistent tight binding linear muffin orbital method (TB-LMTO) by performing spin and non-spin polarized calculations to determine the magnetic and structural stabilities. From the present study, we predict a magnetic phase transition from ferromagnetic (FM) to non-magnetic (NM) state around 67.7 and 10.2 GPa for US and USe, respectively. The pressure-induced magnetic transitions are found second-order in nature. We have also predicted structural phase transition from FM-NaCl-type (B1phase) structure to NM-CsCl-type (B2phase) structure at around 77.5, 23.5 for US and USe, respectively, while UTe undergoes from FM-B1to FM-B2phase around 12.0 GPa.


Sign in / Sign up

Export Citation Format

Share Document