scholarly journals Unbalanced historical phenotypic data from seed regeneration of a barley ex situ collection

2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Maria Y. Gonzalez ◽  
Stephan Weise ◽  
Yusheng Zhao ◽  
Norman Philipp ◽  
Daniel Arend ◽  
...  

Abstract The scarce knowledge on phenotypic characterization restricts the usage of genetic diversity of plant genetic resources in research and breeding. We describe original and ready-to-use processed data for approximately 60% of ~22,000 barley accessions hosted at the Federal ex situ Genebank for Agricultural and Horticultural Plant Species. The dataset gathers records for three traits with agronomic relevance: flowering time, plant height and thousand grain weight. This information was collected for seven decades for winter and spring barley during the seed regeneration routine. The curated data represent a source for research on genetics and genomics of adaptive and yield related traits in cereals due to the importance of barley as model organism. This data could be used to predict the performance of non-phenotyped individuals in other collections through genomic prediction. Moreover, the dataset empowers the utilization of phenotypic diversity of genetic resources for crop improvement.

Author(s):  
M. K. Srivastava

Security of any country as well as the whole world can be ensure through the conservation of germplasm since they are genetic resources that can be used to prolong a population of an organism. Plant genetic resources (PGR) are the foundation of agriculture as well as food and nutritional security. The ICAR-NBPGR is key institution at national level for management of PGR in India under Indian Council of Agricultural Research (ICAR), New Delhi. India being rich in both flora and fauna germplasm diversity also have challenge of protecting its natural heritage. At the same time, we also have mutually beneficial strategies for germplasm exchange with other countries. The National Bureau of Plant Genetic Resources (NBPGR) activities include PGR exploration, collection, exchange, characteri- zation, evaluation, conservation and documentation. It also perform the responsibility to carry out quarantine of all imported PGR. NBPGR collects and acquires germplasm from various sources, conserves it in the Genebank, characterizes and evaluates it for different traits and provides ready material for breeders to develop varieties for farmers. At present, the National Genebank conserves more than 0.45 million accessions. NBPGR is responsible for identifying trait-specific pre-adapted climate resilient genotypes, promising material with disease resistance and quality traits which the breeders use for various crop improvement programmes. The prime focus area of research of NBPGR at present is is on characterization of ex situ conserved germplasm and detailed evaluation of prioritized crops for enhanced utilization. identification of novel genes and alleles for enhanced utilization of PGR; identification and deployment of germplasm/landraces.


2018 ◽  
Vol 2 ◽  
pp. e25223
Author(s):  
Stephan Weise ◽  
Markus Oppermann

The European Search Catalogue for Plant Genetic Resources, EURISCO, provides information about more than 1.9 million accessions of crop plants and their wild relatives, preserved ex situ by almost 400 institutes in Europe and beyond (Weise et al. 2017). EURISCO, which is being maintained on behalf of the European Cooperative Programme for Plant Genetic Resources, is based on a network of National Inventories of 43 member countries. It represents an important effort for the preservation of the world’s agrobiological diversity by providing information about the large genetic diversity kept by the collaborating institutions. Besides the classical passport data, in 2016, EURISCO started to additionally collect phenotypic data about the documented germplasm accessions. The selection of genebank material for both research and breeding purposes is increasingly carried out through the selection of specific phenotypic values, e.g. flowering time or plant height. Thus, these data are of high importance to users of plant genetic resources (PGR) since they determine the value of the respective germplasm. However, because there are no commonly agreed standards existing within the genebank community, this kind of data is very difficult to handle. In this context, the challenges range from synonymous/homonymous descriptor names over different rating scales to different/insufficient amounts of meta information, thus hampering both integration and cross-experiment comparison of data. The presentation will illustrate the approach followed within EURISCO, together with the challenges resulting therefrom. Using this as a solid basis for a discussion about the utilization of this kind of data, the presentation shall be regarded as a call for cooperation.


2013 ◽  
Vol 12 (S1) ◽  
pp. S9-S11 ◽  
Author(s):  
Robert J. Henry

The re-sequencing of the genomes of wild crop relatives is a rapid method to determine the likely utility of the germplasm in crop improvement. The conservation of genetic resources both in situ and ex situ can be guided by information on the novelty of specific populations at the whole-genome and specific allele levels. The analysis of Australian wild relatives of rice, coffee, Macadamia and Eucalypts is being used to support crop improvement and enhance food and energy security. Rice populations that are novel sources of diversity in the A genome of rice have been characterized at the whole-genome level. This has demonstrated the novelty of these species and will support taxonomic revisions of the Oryza species. Variation in the genomes of plants from diverse environments defines strategies that might be employed to develop climate-resilient crop varieties. Eucalypt sequencing aims to support the selection of species and genotypes for use as new energy crops.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
JS Sung ◽  
CW Jeong ◽  
YY Lee ◽  
HS Lee ◽  
YA Jeon ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1572
Author(s):  
Ester Murube ◽  
Romina Beleggia ◽  
Deborah Pacetti ◽  
Ancuta Nartea ◽  
Giulia Frascarelli ◽  
...  

Food legumes are at the crossroads of many societal challenges that involve agriculture, such as climate change and food sustainability and security. In this context, pulses have a crucial role in the development of plant-based diets, as they represent a very good source of nutritional components and improve soil fertility, such as by nitrogen fixation through symbiosis with rhizobia. The main contribution to promotion of food legumes in agroecosystems will come from plant breeding, which is guaranteed by the availability of well-characterized genetic resources. Here, we analyze seeds of 25 American and European common bean purified accessions (i.e., lines of single seed descent) for different morphological and compositional quality traits. Significant differences among the accessions and superior genotypes for important nutritional traits are identified, with some lines showing extreme values for more than one trait. Heritability estimates indicate the importance of considering the effects of environmental growth conditions on seed compositional traits. They suggest the need for more phenotypic characterization in different environments over different years to better characterize combined effects of environment and genotype on nutritional trait variations. Finally, adaptation following the introduction and spread of common bean in Europe seems to have affected its nutritional profile. This finding further suggests the relevance of evolutionary studies to guide breeders in the choice of plant genetic resources.


2018 ◽  
Vol 6 (11) ◽  
pp. 109-120
Author(s):  
Filomena Rocha

Since the 1970s, Portugal has been endeavouring systematic and coordinated efforts for ex situ conservation of plant genetic resources. Portugal maintains in ex situ a large seed collection of cultivated species (cereals, fibres, grain legumes, vegetables), wild species (forages, MAP species), also national clone collections of olive, fruit trees and grapes. In 2011 the Portuguese National Genebank (BPGV) and ISOPLEXIS implemented the GRIN-Global platform, as provides the opportunity to increase data quality, to have long term sustainability for data curation, integrates all collections in one management system optimizing the costs and staff resources. Now, the main objective in Portugal is to implement the Grin Global Platform at the national level to consolidate its National Programme of Plant Genetic Resources (NPPGR) with all national partners directly involved in the conservation of PGR. The main objectives of this communication are: to demonstrate the valuable contribution of the Grin-Global platform to the NPPGR; discuss the development and status of the Portugal’s National Inventory 2018 in EURISCO, analyse the evolution of the amount of passport information in EURISCO from 2015 to 2018; to address the steps that are being taken in Portugal for the Implementation of the Grin-Global Platform at the national level.


Author(s):  
Paula Bramel ◽  

This chapter reviews the key issues and challenges facing genebanks in preserving crop genetic diversity ex situ. Local crop genetic diversity is challenged with changes in land use, urbanization, land degradation, changes in agricultural practises, availability of improved varieties, changes in market preference, and the impact of climate change. Efforts have been made to secure plant genetic resources ex situ for future use but there are significant issues related to cost effective, efficient, secure, rational, and sustainable long-term ex situ conservation. It begins by addressing issues for the composition of ex situ collections and moves on to discuss issues for routine operations for conservation. The chapter also highlights issues for the use of conserved genetic resources, before concluding with a summary of why the development of sustainable genebank systems is so important.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Ines Van den houwe ◽  
Rachel Chase ◽  
Julie Sardos ◽  
Max Ruas ◽  
Els Kempenaers ◽  
...  

AbstractThe CGIAR genebank International Musa Germplasm Transit Centre (ITC) currently holds 1617 banana accessions from 38 countries as an in vitro collection, backed-up by a cryopreserved collection to safeguard global Musa diversity in perpetuity. The ITC also serves as a vital safety backup and transit centre for national banana genebanks and ensures that germplasm is clean of pests and diseases and freely available under the International Treaty on Plant Genetic Resources for Food and Agriculture. In more than 35 years of activity, the ITC has distributed over 18,000 banana accession samples to researchers and farmers in 113 countries. Ex situ conservation of vegetatively-propagated crops such as banana poses very particular challenges. Maintaining the ITC genebank is labor intense and costly. Efficiencies are sought through research and development of techniques on detecting viruses, the genetic integrity of accessions, and on innovative means of safeguarding banana diversity, such as conserving populations of wild species by seed banking. Although the conservation of global banana diversity is the main objective of the ITC, significant value comes from its holistic approach to better understand and promote its germplasm through numerous research activities and resources. Techniques for morphological and molecular characterization serve to identify and describe the collection, while also determining what gaps should be filled by collecting missions with national partners. The evaluation of desirable agronomic traits inherent in Musa spp. are investigated by a high-throughput phenotyping platform, which helps breeding programs to select cultivars resistant or tolerant to biotic and abiotic stresses. Genomic and bioinformatic studies of several banana wild relatives greatly enhance our understanding of Musa genetic diversity, links to important phenotypic traits and bring new methods for management of the collection. Collectively, these research activities produce enormous amounts of data that require curation and dissemination to the public. The two information systems at the ITC, Musa Genebank Management System and the Musa Germplasm Information System, serve to manage the genebank activities and to make public germplasm-related data for over 30 banana collections worldwide, respectively. By implementing the 10-year workplan set out in the Global Strategy for the Conservation and Use of Musa Genetic Resources, the network MusaNet supports Musa researchers and stakeholders, including the ITC, and most importantly, links to the world’s banana-producing countries via three regional banana networks.


Sign in / Sign up

Export Citation Format

Share Document