scholarly journals Anaphase-promoting complex-dependent proteolysis of cell cycle regulators and genomic instability of cancer cells

Oncogene ◽  
2005 ◽  
Vol 24 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Ralph Wäsch ◽  
Dirk Engelbert
Author(s):  
Tatyana Bodrug ◽  
Kaeli A. Welsh ◽  
Megan Hinkle ◽  
Michael J. Emanuele ◽  
Nicholas G. Brown

The ubiquitin (Ub)-proteasome system is vital to nearly every biological process in eukaryotes. Specifically, the conjugation of Ub to target proteins by Ub ligases, such as the Anaphase-Promoting Complex/Cyclosome (APC/C), is paramount for cell cycle transitions as it leads to the irreversible destruction of cell cycle regulators by the proteasome. Through this activity, the RING Ub ligase APC/C governs mitosis, G1, and numerous aspects of neurobiology. Pioneering cryo-EM, biochemical reconstitution, and cell-based studies have illuminated many aspects of the conformational dynamics of this large, multi-subunit complex and the sophisticated regulation of APC/C function. More recent studies have revealed new mechanisms that selectively dictate APC/C activity and explore additional pathways that are controlled by APC/C-mediated ubiquitination, including an intimate relationship with chromatin regulation. These tasks go beyond the traditional cell cycle role historically ascribed to the APC/C. Here, we review these novel findings, examine the mechanistic implications of APC/C regulation, and discuss the role of the APC/C in previously unappreciated signaling pathways.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 725 ◽  
Author(s):  
Hiroyuki Yamano

The separation of sister chromatids at anaphase, which is regulated by an E3 ubiquitin ligase called the anaphase-promoting complex/cyclosome (APC/C), is arguably the most important irrevocable event during the cell cycle. The APC/C and cyclin-dependent kinase 1 (Cdk1) are just two of the many significant cell cycle regulators and exert control through ubiquitylation and phosphorylation, respectively. The temporal and spatial regulation of the APC/C is achieved by multiple mechanisms, including phosphorylation, interaction with the structurally related co-activators Cdc20 and Cdh1, loading of distinct E2 ubiquitin-conjugating enzymes, binding with inhibitors and differential affinities for various substrates. Since the discovery of APC/C 25 years ago, intensive studies have uncovered many aspects of APC/C regulation, but we are still far from a full understanding of this important cellular machinery. Recent high-resolution cryogenic electron microscopy analysis and reconstitution of the APC/C have greatly advanced our understanding of molecular mechanisms underpinning the enzymatic properties of APC/C. In this review, we will examine the historical background and current understanding of APC/C regulation.


2005 ◽  
Vol 34 (2) ◽  
pp. 535-551 ◽  
Author(s):  
J G Moggs ◽  
T C Murphy ◽  
F L Lim ◽  
D J Moore ◽  
R Stuckey ◽  
...  

Estrogen receptor (ER)-negative breast carcinomas do not respond to hormone therapy, making their effective treatment very difficult. The re-expression of ERα in ER-negative MDA-MB-231 breast cancer cells has been used as a model system, in which hormone-dependent responses can be restored. Paradoxically, in contrast to the mitogenic activity of 17β-estradiol (E2) in ER-positive breast cancer cells, E2 suppresses proliferation in ER-negative breast cancer cells in which ERα has been re-expressed. We have used global gene expression profiling to investigate the mechanism by which E2 suppresses proliferation in MDA-MB-231 cells that express ERα through adenoviral infection. We show that a number of genes known to promote cell proliferation and survival are repressed by E2 in these cells. These include genes encoding the anti-apoptosis factor SURVIVIN, positive cell cycle regulators (CDC2, CYCLIN B1, CYCLIN B2, CYCLIN G1, CHK1, BUB3, STK6, SKB1, CSE1 L) and chromosome replication proteins (MCM2, MCM3, FEN1, RRM2, TOP2A, RFC1). In parallel, E2-induced the expression of the negative cell cycle regulators KIP2 and QUIESCIN Q6, and the tumour-suppressor genes E-CADHERIN and NBL1. Strikingly, the expression of several of these genes is regulated in the opposite direction by E2 compared with their regulation in ER-positive MCF-7 cells. Together, these data suggest a mechanism for the E2-dependent suppression of proliferation in ER-negative breast cancer cells into which ERα has been reintroduced.


2021 ◽  
Vol 16 (11) ◽  
pp. 1934578X2110576
Author(s):  
Ji Hye Jeong ◽  
Jae-Ha Ryu ◽  
Hwa Jin Lee

Several dietary and medicinal herbs have been shown to be effective in the treatment and prevention of cancer. Although Piper nigrum has been shown to have anti-cancer activities against various cancer cells, its anti-pancreatic cancer properties have not been reported. In the present study, P. nigrum extract (PNE) inhibited proliferation of PANC-1 human pancreatic cancer cells. Flow cytometry showed G0/G1 arrest caused by PNE in PANC-1 cells. In addition, Western blot analysis showed that PNE suppressed the protein levels of cell cycle regulators such as cyclin B1, cyclin D1, survivin, and Forkhead box M1 (FoxM1). These findings suggested that the inhibitory activity of PNE against the growth of PANC-1 cells was correlated with cell cycle arrest and repression of cell cycle regulators. Wound healing and trans-well assays showed that PNE suppressed migration and invasion of PANC-1 cells. Piperine, a major alkaloid of Piper nigrum, was identified as the main component of PNE by HPLC analysis. Piperine also attenuated the cell growth, migration, and invasion of PANC-1 cells, suggesting its contribution to the anti-pancreatic cancer effects of PNE. These results demonstrate that PNE and its major constituent, piperine, have anti-pancreatic cancer properties such as growth-inhibition, anti-migration, and anti-invasion of cancer cells.


2004 ◽  
Vol 24 (8) ◽  
pp. 3562-3576 ◽  
Author(s):  
Martin Schwickart ◽  
Jan Havlis ◽  
Bianca Habermann ◽  
Aliona Bogdanova ◽  
Alain Camasses ◽  
...  

ABSTRACT The anaphase-promoting complex (APC/C) is a large ubiquitin-protein ligase which controls progression through anaphase by triggering the degradation of cell cycle regulators such as securin and B-type cyclins. The APC/C is an unusually complex ligase containing at least 10 different, evolutionarily conserved components. In contrast to APC/C's role in cell cycle regulation little is known about the functions of individual subunits and how they might interact with each other. Here, we have analyzed Swm1/Apc13, a small subunit recently identified in the budding yeast complex. Database searches revealed proteins related to Swm1/Apc13 in various organisms including humans. Both the human and the fission yeast homologues are associated with APC/C subunits, and they complement the phenotype of an SWM1 deletion mutant of budding yeast. Swm1/Apc13 promotes the stable association with the APC/C of the essential subunits Cdc16 and Cdc27. Accordingly, Swm1/Apc13 is required for ubiquitin ligase activity in vitro and for the timely execution of APC/C-dependent cell cycle events in vivo.


2018 ◽  
Author(s):  
Denis Ostapenko ◽  
Mark J. Solomon

ABSTRACTThe Anaphase-Promoting Complex/Cyclosome (APC/C) is a ubiquitin ligase that promotes the ubiquitination and subsequent degradation of numerous cell cycle regulators during mitosis and in G1. Proteins are recruited to the APC/C by activator proteins such as Cdh1. During the cell cycle, Cdh1 is subject to precise regulation so that substrates are not degraded prematurely. We have explored the regulation of Cdh1 during the developmental transition into meiosis and sporulation in the budding yeast S. cerevisiae. Transition to sporulation medium triggers the degradation of Cdh1. Degradation requires that cells be of the a/a mating type and be starved for glucose, but they do not actually need to enter into the meiotic program. Degradation requires an intact SNF1 protein kinase complex (orthologous to the mammalian AMPK nutritional sensor), which is activated by the absence of glucose. Cdh1 degradation is mediated by the APC/C itself in a ‘trans’ mechanism in which one molecule of Cdh1 recruits a second molecule of Cdh1 to the APC/C for ubiquitination. However, Cdh1-Cdh1 recognition does not depend on the degradation motifs or binding sites involved in the recognition of typical APC/C substrates. We hypothesize that Cdh1 degradation is necessary for the preservation of cell cycle regulators and chromosome cohesion proteins between the reductional and equational meiotic divisions, which occur without the intervening Gap or S phases found in mitotic cell cycles.


Sign in / Sign up

Export Citation Format

Share Document