scholarly journals A selective inhibitor of the p110δ isoform of PI 3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16

Oncogene ◽  
2006 ◽  
Vol 25 (50) ◽  
pp. 6648-6659 ◽  
Author(s):  
C Billottet ◽  
V L Grandage ◽  
R E Gale ◽  
A Quattropani ◽  
C Rommel ◽  
...  
1983 ◽  
Vol 17 (3) ◽  
pp. 239-247 ◽  
Author(s):  
Toshihiro Miyoshi ◽  
Shigeo Ogawa ◽  
Toshinori Kanamori ◽  
Masahiro Nobuhara ◽  
Masayoshi Namba

2020 ◽  
Vol 64 (10-11-12) ◽  
pp. 471-477
Author(s):  
Shengbiao Li ◽  
Qingsong Huang ◽  
Jianwen Mao ◽  
Qiuhong LI

FGF signaling pathway is imperative for definitive endoderm (DE) differentiation from human embryonic stem cells (hESCs), which always accompanies an epithelial-to-mesenchymal transition (EMT) process. However, whether there is an association between FGF signaling and the EMT during DE formation in vitro has remained elusive. In the present study, we identify that several FGF family members were significantly activated during the differentiation of hESCs toward DE. Inhibition of FGF signaling by an efficient and selective inhibitor BGJ398 abolishes both the EMT and DE induction by blocking the activation of the zinc-finger transcription factor SNAI1 which is a direct transcriptional repressor of cell adhesion protein CDH1. In addition, cell proliferation is also severely influenced by attenuating the FGF signaling. Collectively, we propose that the FGF signaling promotes the DE formation through mediating the EMT and cell proliferation.


2011 ◽  
Vol 29 (2) ◽  
pp. 181-186 ◽  
Author(s):  
Bulent Karadeniz ◽  
Zeynep Ulker ◽  
Lokman Alpsoy

The aim of this study is to investigate the effects of the storax balsam, which is a kind of sweet gum obtained from the Liquidambar orientalis Mill trees, on cell viability, cytotoxicity and genotoxicity in human lymphocyte in vitro. We studied the genotoxic effects of the extract of storax balsam (SE) using sister chromatid exchange (SCE) test system. Also the cytotoxic and inhibitory effects on cell proliferation of SE were evaluated using lactate dehydrogenase (LDH) assay and cell proliferation (WST-1) assay. The SCE frequency was increased when the cells were treated with 1.6 and 4.0 µg/mL SE concentrations ( p < 0.05). Moreover, treatment of the cells with the same concentrations significantly depleted the cell number at 24th and 48th hours and elevated the LDH levels ( p < 0.05) at 48th hour. These results suggest that SE can be used as an alternative antibacterial and antipathogenic agent due to its cytotoxic and genotoxic effects.


Blood ◽  
2001 ◽  
Vol 98 (4) ◽  
pp. 995-1002 ◽  
Author(s):  
Maria Koziolkiewicz ◽  
Edyta Gendaszewska ◽  
Maria Maszewska ◽  
C. A. Stein ◽  
Wojciech J. Stec

Many reports indicate different nonantisense yet sequence-specific effects of antisense phosphorothioate oligonucleotides. Products of enzymatic degradation of the oligonucleotides can also influence cell proliferation. The cytotoxic effects of deoxyribonucleoside-5′-phosphates (dNMPs) and their 5′-phosphorothioate analogs, deoxyribonucleoside-5′-monophosphorothioates (dNMPSs) on 4 human cell types (HeLa, HL-60, K-562, and endothelial cells) were examined, and the effects were correlated with the catabolism of these compounds. The results indicate that differences in cytotoxicity of dNMPs or dNMPSs in these cells depend upon different activity of an ecto-5′-nucleotidase. It has also been found that dNMPSs stimulate proliferation of human umbilical vein endothelial cells and HL-60 cells in a concentration-dependent manner. This stimulation might be caused by the binding of deoxynucleoside-5′-phosphorothioates to as-yet unidentified nucleotide receptor(s) at the cell surface.


Author(s):  
P. Eremin ◽  
Y. Kostromina ◽  
R. Yakupova

The technique of obtaining a new bioplastic material based on collagen, elastin and hyaluronic acid is described. The results of a study of the biomaterial structure and properties in order to assess the prospects for its further use in clinical practice are presented. Co-culturing of the bioplastic material and human fibroblasts did not reveal any its cytotoxic effects on cells in culture. It was shown that the biomaterial samples were able to maintain physical properties in the culture medium for more than 10 days. Due to its physical properties and structure, the use of created biomaterial provides effective conditions for good cell proliferation, which allows us to consider it as a promising biomaterial for use in clinical practice.


2020 ◽  
Vol 7 (5) ◽  
pp. 461-469
Author(s):  
Giovanna Calabrese ◽  
Salvatore Petralia ◽  
Claudia Fabbi ◽  
Stefano Forte ◽  
Domenico Franco ◽  
...  

Abstract Nanotechnology plays a key role in the development of innovative scaffolds for bone tissue engineering (BTE) allowing the incorporation of nanomaterials able to improve cell proliferation and differentiation. In this study, Mg-HA-Coll type I scaffolds (Mg-HA-based scaffolds) were nanofunctionalized with gold nanorods (Au NRs), palladium nanoparticles (Pd NPs) and maghemite nanoparticles (MAG NPs). Nanofunctionalized Mg-HA-based scaffolds (NF-HA-Ss) were tested for their ability to promote both the proliferation and the differentiation of adipose-derived mesenchymal stem cells (hADSCs). Results clearly highlight that MAG nanofunctionalization substantially improves cell proliferation up to 70% compared with the control (Mg-HA-based scaffold), whereas both Au NRs and Pd NPs nanofunctionalization induce a cell growth inhibition of 94% and 89%, respectively. Similar evidences were found for the osteoinductive properties showing relevant calcium deposits (25% higher than the control) for MAG nanofunctionalization, while a decreasing of cell differentiation (20% lower than the control) for both Au NRs and Pd NPs derivatization. These results are in agreement with previous studies that found cytotoxic effects for both Pd NPs and Au NRs. The excellent improvement of both osteoconductivity and osteoinductivity of the MAG NF-HA-S could be attributed to the high intrinsic magnetic field of superparamagnetic MAG NPs. These findings may pave the way for the development of innovative nanostructured scaffolds for BTE.


Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769591 ◽  
Author(s):  
Larissa Juliani Sanches ◽  
Poliana Camila Marinello ◽  
Carolina Panis ◽  
Tatiane Renata Fagundes ◽  
José Andrés Morgado-Díaz ◽  
...  

Citral is a natural compound that has shown cytotoxic and antiproliferative effects on breast and hematopoietic cancer cells; however, there are few studies on melanoma cells. Oxidative stress is known to be involved in all stages of melanoma development and is able to modulate intracellular pathways related to cellular proliferation and death. In this study, we hypothesize that citral exerts its cytotoxic effect on melanoma cells by the modulation of cellular oxidative status and/or intracellular signaling. To test this hypothesis, we investigated the antiproliferative and cytotoxic effects of citral on B16F10 murine melanoma cells evaluating its effects on cellular oxidative stress, DNA damage, cell death, and important signaling pathways, as these pathways, namely, extracellular signal-regulated kinases 1/2 (ERK1/2), AKT, and phosphatidylinositol-3 kinase, are involved in cell proliferation and differentiation. The p53 and nuclear factor kappa B were also investigated due to their ability to respond to intracellular stress. We observed that citral exerted antiproliferative and cytotoxic effects in B16F10; induced oxidative stress, DNA lesions, and p53 nuclear translocation; and reduced nitric oxide levels and nuclear factor kappa B, ERK1/2, and AKT. To investigate citral specificity, we used non-neoplastic human and murine cells, HaCaT (human skin keratinocytes) and NIH-3T3 cells (murine fibroblasts), and observed that although citral effects were not specific for cancer cells, non-neoplastic cells were more resistant to citral than B16F10. These findings highlight the potential clinical utility of citral in melanoma, with a mechanism of action involving the oxidative stress generation, nitric oxide depletion, and interference in signaling pathways related to cell proliferation.


2012 ◽  
Vol 427 (2) ◽  
pp. 248-253 ◽  
Author(s):  
Amelia Mazzone ◽  
Seth T. Eisenman ◽  
Peter R. Strege ◽  
Zhen Yao ◽  
Tamas Ordog ◽  
...  

Author(s):  
Katarzyna Czarnek ◽  
Andrzej K. Siwicki

Abstract Chromium (III) and cobalt (II) are necessary elements required for the proper functioning of the organism, but their excess can cause toxic effects. They are the basic components of implants and are also commonly used in medicine as components of dietary supplements, vitamin and mineral products and energy drinks. The aim of this study was to investigate the effect of cobalt (II) and chromium (III) and their combination on BJ cells. In the study, BJ cells were exposed to CoCl2 or CrCl3 at concentrations ranging from 100 to 1400 µM, and the cytotoxicity of chromium (III) and cobalt (II) and their mixtures was assessed by MTT reduction, LDH release and NRU assays. The outcome of this work reveals the cytotoxic effects of chromium (III) and cobalt (II) and their mixtures on BJ cells. In the cytotoxicity assays, at low concentrations of CoCl2 and CrCl3, stimulation of cell proliferation was observed. In higher concentrations, the cell viability decreased for the tested line in all the assays. During the simultaneous incubation of fibroblasts with 200 µM of CrCl3 and 1000 µM of CoCl2, antagonism was observed: chromium (III) at the concentration of 200 µM induced protection from cobalt (II) toxicity; in the case of interaction of chromium chloride at 1000 µm and cobalt chloride at 200 µM, the protective effect of CrCl3 on CoCl2 was not observed. In the latter case, synergism between these elements was noted. Our work indicates that cobalt (II) and chromium (III) show cytotoxic properties. These metals have a destructive effect on the cell membrane, lysosomes and mitochondria, which leads to disorders of cell metabolism.


Sign in / Sign up

Export Citation Format

Share Document