scholarly journals Strain sensitivity and durability in p-type and n-type organic thin-film transistors with printed silver electrodes

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Kenjiro Fukuda ◽  
Kenta Hikichi ◽  
Tomohito Sekine ◽  
Yasunori Takeda ◽  
Tsukuru Minamiki ◽  
...  

2020 ◽  
Vol 91 (3) ◽  
pp. 30201
Author(s):  
Hang Yu ◽  
Jianlin Zhou ◽  
Yuanyuan Hao ◽  
Yao Ni

Organic thin film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8BTBT) and copper (Cu) electrodes were fabricated. For improving the electrical performance of the original devices, the different modifications were attempted to insert in three different positions including semiconductor/electrode interface, semiconductor bulk inside and semiconductor/insulator interface. In detail, 4,4′,4′′-tris[3-methylpheny(phenyl)amino] triphenylamine (m-MTDATA) was applied between C8BTBTand Cu electrodes as hole injection layer (HIL). Moreover, the fluorinated copper phthalo-cyanine (F16CuPc) was inserted in C8BTBT/SiO2 interface to form F16CuPc/C8BTBT heterojunction or C8BTBT bulk to form C8BTBT/F16CuPc/C8BTBT sandwich configuration. Our experiment shows that, the sandwich structured OTFTs have a significant performance enhancement when appropriate thickness modification is chosen, comparing with original C8BTBT devices. Then, even the low work function metal Cu was applied, a normal p-type operate-mode C8BTBT-OTFT with mobility as high as 2.56 cm2/Vs has been fabricated.



2018 ◽  
Vol 83 (2) ◽  
pp. 20201 ◽  
Author(s):  
Yao Ni ◽  
Jianlin Zhou ◽  
Yuanyuan Hao ◽  
Hang Yu ◽  
Yanyun Li ◽  
...  

Organic thin film transistors (OTFTs) with silicon oxide (SiO2)/poly(4-vinylphenol) (PVP)/polymethylmethacrylate (PMMA) tri-layer structure (SPP) as dielectric layers have been fabricated. To verify the validity of such tri-layer structure, two different organic semiconductor materials such as p-type pentacene and n-type fluorinated copper phthalo–cyanine (F16CuPc) are both used for fabricating OTFTs. Comparing with the OTFTs even by using PMMA modification, the better interface quality existing between SPP dielectric and organic film leads a higher conductive efficiency for transport carriers in channel. And then the field effect carriers (hole in pentacene OTFTs and electron in F16CuPc OTFTs) mobilities are both increased obviously. Our results show the SPP dielectric structure can be widely used to improve performance of OTFTs.



MRS Advances ◽  
2018 ◽  
Vol 3 (49) ◽  
pp. 2931-2936
Author(s):  
G. Kitahara ◽  
K. Aoshima ◽  
J. Tsutsumi ◽  
H. Minemawari ◽  
S. Arai ◽  
...  

ABSTRACTRecently, an epoch-making printing technology called “SuPR-NaP (Surface Photo-Reactive Nanometal Printing)” that allows easy, high-speed, and large-area manufacturing of ultrafine silver wiring patterns has been developed. Here we demonstrate low-voltage operation of organic thin-film transistors (OTFTs) composed of printed source/drain electrodes that are produced by the SuPR-NaP technique. We utilize an ultrathin layer of perfluoropolymer, Cytop, that functions not only as a base layer for producing patterned reactive surface in the SuPR-NaP technique but also as an ultrathin gate dielectric layer of OTFTs. By the use of 22 nm-thick Cytop gate dielectric layer, we successfully operate polycrystalline pentacene OTFTs below 2 V with negligible hysteresis. We also observe the improvement of carrier injection by the surface modification of printed silver electrodes. We discuss that the SuPR-NaP technique allows the production of high-capacitance gate dielectric layers as well as high-resolution printed silver electrodes, which provides promising bases for producing practical active-matrix OTFT backplanes.



2017 ◽  
Vol 50 ◽  
pp. 426-428 ◽  
Author(s):  
Gyo Kitahara ◽  
Keisuke Aoshima ◽  
Jun'ya Tsutsumi ◽  
Hiromi Minemawari ◽  
Shunto Arai ◽  
...  


2019 ◽  
Vol 16 (9) ◽  
pp. 225-230 ◽  
Author(s):  
Jinwoo Kim ◽  
Jaewook Jeong ◽  
Sung J. Park ◽  
Soon-Ki Kwon ◽  
Jang-Joo Kim ◽  
...  


2017 ◽  
Vol 41 ◽  
pp. 137-142 ◽  
Author(s):  
Keisuke Aoshima ◽  
Shunto Arai ◽  
Katsuo Fukuhara ◽  
Toshikazu Yamada ◽  
Tatsuo Hasegawa


Sign in / Sign up

Export Citation Format

Share Document