scholarly journals Proton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
R. Alan Mitteer ◽  
Yanling Wang ◽  
Jennifer Shah ◽  
Sherika Gordon ◽  
Marcus Fager ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Zariyantey Abdul Hamid ◽  
Winnie Hii Lin Lin ◽  
Basma Jibril Abdalla ◽  
Ong Bee Yuen ◽  
Elda Surhaida Latif ◽  
...  

Hematopoietic stem cells- (HSCs-) based therapy requiresex vivoexpansion of HSCs prior to therapeutic use. However,ex vivoculture was reported to promote excessive production of reactive oxygen species (ROS), exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role ofHibiscus sabdariffaL. (Roselle) in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at varying concentrations (0–1000 ng/mL) for 24 hours to the freshly isolated murine bone marrow cells (BMCs) cultures. Effects of Roselle on cell viability, reactive oxygen species (ROS) production, glutathione (GSH) level, superoxide dismutase (SOD) activity, and DNA damage were investigated. Roselle enhanced the survival(P<0.05)of BMCs at 500 and 1000 ng/mL, increased survival of Sca-1+cells (HSCs) at 500 ng/mL, and maintained HSCs phenotype as shown from nonremarkable changes of surface marker antigen (Sca-1) expression in all experimental groups. Roselle increased(P<0.05)the GSH level and SOD activity but the level of reactive oxygen species (ROS) was unaffected. Moreover, Roselle showed significant cellular genoprotective potency against H2O2-induced DNA damage. Conclusively, Roselle shows novel property as potential supplement and genoprotectant against oxidative damage to cultured HSCs.


Sign in / Sign up

Export Citation Format

Share Document