scholarly journals Possible connections of the opposite trends in Arctic and Antarctic sea-ice cover

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Lejiang Yu ◽  
Shiyuan Zhong ◽  
Julie A. Winkler ◽  
Mingyu Zhou ◽  
Donald H. Lenschow ◽  
...  
Keyword(s):  
Sea Ice ◽  
2012 ◽  
Vol 6 (2) ◽  
pp. 931-956 ◽  
Author(s):  
C. L. Parkinson ◽  
D. J. Cavalieri

Abstract. In sharp contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978–December 2010 reveal an overall positive trend in ice extents of 17 100 ± 2300 km2 yr−1. Much of the increase, at 13 700 ± 1500 km2 yr−1, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has, like the Arctic, instead experienced significant sea ice decreases, with an overall ice extent trend of −8200 ± 1200 km2 yr−1. When examined through the annual cycle over the 32-yr period 1979–2010, the Southern Hemisphere sea ice cover as a whole experienced positive ice extent trends in every month, ranging in magnitude from a low of 9100 ± 6300 km2 yr−1 in February to a high of 24 700 ± 10 000 km2 yr−1 in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and Western Pacific Ocean had a mixture of positive and negative trends. Comparing ice-area results to ice-extent results, in each case the ice-area trend has the same sign as the ice-extent trend, but differences in the magnitudes of the two trends identify regions with overall increasing ice concentrations and others with overall decreasing ice concentrations. The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.


1982 ◽  
Vol 3 ◽  
pp. 12-16 ◽  
Author(s):  
I. Allison ◽  
C.M. Tivendale ◽  
G.J. Akerman ◽  
J.M. Tann ◽  
R.H. Wills

Seasonal variations in radiative and turbulent fluxes at the surface of, and in the heat transfer within, sea ice are discussed from results of energy balance studies at a site of annual ice cover near Mawson, Antarctica. In mid-summer, the open water gains heat mostly by radiation but by early February the ocean is cooling predominantly by strong turbulent losses, with some radiative heat loss occurring also by March. When an ice cover forms, turbulent fluxes decrease from several 100 W m−2over open water to only 40 w m−2over ice less than 0.2 m thick and even less over thicker ice.Net radiative losses over mature ice in mid-winter are balanced mostly by conduction through the ice cover but with some turbulent heat gain at the surface. By mid-spring, there is a net radiative gain, the turbulent fluxes are again outgoing, and there is little total heat transfer through the ice. At break-out, the albedo increase from ice to open water causes a large increase in the net radiative gain.At the lower boundary of the ice, the oceanic heat flux provides an important contribution. A net advection of heat into the region is shown from temperature profiles in the water under the ice. Salinity changes in the water during the period of ice melt are also discussed.


2012 ◽  
Vol 6 (4) ◽  
pp. 871-880 ◽  
Author(s):  
C. L. Parkinson ◽  
D. J. Cavalieri

Abstract. In sharp contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978–December 2010 reveal an overall positive trend in ice extents of 17 100 ± 2300 km2 yr−1. Much of the increase, at 13 700 ± 1500 km2 yr−1, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has (like the Arctic) instead experienced significant sea ice decreases, with an overall ice extent trend of −8200 ± 1200 km2 yr−1. When examined through the annual cycle over the 32-yr period 1979–2010, the Southern Hemisphere sea ice cover as a whole experienced positive ice extent trends in every month, ranging in magnitude from a low of 9100 ± 6300 km2 yr−1 in February to a high of 24 700 ± 10 000 km2 yr−1 in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and western Pacific Ocean had a mixture of positive and negative trends. Comparing ice-area results to ice-extent results, in each case the ice-area trend has the same sign as the ice-extent trend, but the magnitudes of the two trends differ, and in some cases these differences allow inferences about the corresponding changes in sea ice concentrations. The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.


2017 ◽  
Vol 30 (6) ◽  
pp. 2251-2267 ◽  
Author(s):  
Josefino C. Comiso ◽  
Robert A. Gersten ◽  
Larry V. Stock ◽  
John Turner ◽  
Gay J. Perez ◽  
...  

Abstract The Antarctic sea ice extent has been slowly increasing contrary to expected trends due to global warming and results from coupled climate models. After a record high extent in 2012 the extent was even higher in 2014 when the magnitude exceeded 20 × 106 km2 for the first time during the satellite era. The positive trend is confirmed with newly reprocessed sea ice data that addressed inconsistency issues in the time series. The variability in sea ice extent and ice area was studied alongside surface ice temperature for the 34-yr period starting in 1981, and the results of the analysis show a strong correlation of −0.94 during the growth season and −0.86 during the melt season. The correlation coefficients are even stronger with a one-month lag in surface temperature at −0.96 during the growth season and −0.98 during the melt season, suggesting that the trend in sea ice cover is strongly influenced by the trend in surface temperature. The correlation with atmospheric circulation as represented by the southern annular mode (SAM) index appears to be relatively weak. A case study comparing the record high in 2014 with a relatively low ice extent in 2015 also shows strong sensitivity to changes in surface temperature. The results suggest that the positive trend is a consequence of the spatial variability of global trends in surface temperature and that the ability of current climate models to forecast sea ice trend can be improved through better performance in reproducing observed surface temperatures in the Antarctic region.


2014 ◽  
Vol 11 (17) ◽  
pp. 4713-4731 ◽  
Author(s):  
S. Wang ◽  
D. Bailey ◽  
K. Lindsay ◽  
J. K. Moore ◽  
M. Holland

Abstract. Iron is a key nutrient for phytoplankton growth in the surface ocean. At high latitudes, the iron cycle is closely related to the dynamics of sea ice. In recent decades, Arctic sea ice cover has been declining rapidly and Antarctic sea ice has exhibited large regional trends. A significant reduction of sea ice in both hemispheres is projected in future climate scenarios. In order to adequately study the effect of sea ice on the polar iron cycle, sea ice bearing iron was incorporated in the Community Earth System Model (CESM). Sea ice acts as a reservoir for iron during winter and releases the trace metal to the surface ocean in spring and summer. Simulated iron concentrations in sea ice generally agree with observations in regions where iron concentrations are relatively low. The maximum iron concentrations simulated in Arctic and Antarctic sea ice are much lower than observed, which is likely due to underestimation of iron inputs to sea ice or missing mechanisms. The largest iron source to sea ice is suspended sediments, contributing fluxes of iron of 2.2 × 108 mol Fe month−1 in the Arctic and 4.1 × 106 mol Fe month−1 in the Southern Ocean during summer. As a result of the iron flux from ice, iron concentrations increase significantly in the Arctic. Iron released from melting ice increases phytoplankton production in spring and summer and shifts phytoplankton community composition in the Southern Ocean. Results for the period of 1998 to 2007 indicate that a reduction of sea ice in the Southern Ocean will have a negative influence on phytoplankton production. Iron transport by sea ice appears to be an important process bringing iron to the central Arctic. The impact of ice to ocean iron fluxes on marine ecosystems is negligible in the current Arctic Ocean, as iron is not typically the growth-limiting nutrient. However, it may become a more important factor in the future, particularly in the central Arctic, as iron concentrations will decrease with declining sea ice cover and transport.


2013 ◽  
Vol 26 (15) ◽  
pp. 5624-5636 ◽  
Author(s):  
Chao Li ◽  
Dirk Notz ◽  
Steffen Tietsche ◽  
Jochem Marotzke

Abstract To examine the long-term stability of Arctic and Antarctic sea ice, idealized simulations are carried out with the climate model ECHAM5/Max Planck Institute Ocean Model (MPI-OM). Atmospheric CO2 concentration is increased over 2000 years from preindustrial levels to quadrupling, is then kept constant for 5940 years, is afterward decreased over 2000 years to preindustrial levels, and is finally kept constant for 3940 years. Despite these very slow changes, the sea ice response significantly lags behind the CO2 concentration change. This lag, which is caused by the ocean's thermal inertia, implies that the sea ice equilibrium response to increasing CO2 concentration is substantially underestimated by transient simulations. The sea ice response to CO2 concentration change is not truly hysteretic and is in principle reversible. The authors find no lag in the evolution of Arctic sea ice relative to changes in annual-mean Northern Hemisphere surface temperature. The summer sea ice cover changes linearly with respect to both CO2 concentration and temperature, while the Arctic winter sea ice cover shows a rapid transition to a very low sea ice coverage. This rapid transition of winter sea ice is associated with a sharply enhanced ice–albedo feedback and a sudden onset of convective-cloud feedback in the Arctic. The Antarctic sea ice cover retreats continuously without any rapid transition during the warming. Compared to Arctic sea ice, Antarctic sea ice shows a much more strongly lagged response to changes in CO2 concentration. It even lags behind the surface temperature change, which is caused by a different response of ocean deep convection during the warming and the cooling periods.


Science ◽  
1975 ◽  
Vol 187 (4174) ◽  
pp. 346-347 ◽  
Author(s):  
A. L. Gordon ◽  
H. W. Taylor

2015 ◽  
Vol 2 (5) ◽  
pp. 140456 ◽  
Author(s):  
Christophe Barbraud ◽  
Karine Delord ◽  
Henri Weimerskirch

Climate change has been predicted to reduce Antarctic sea ice but, instead, sea ice surrounding Antarctica has expanded over the past 30 years, albeit with contrasted regional changes. Here we report a recent extreme event in sea ice conditions in East Antarctica and investigate its consequences on a seabird community. In early 2014, the Dumont d'Urville Sea experienced the highest magnitude sea ice cover (76.8%) event on record (1982–2013: range 11.3–65.3%; mean±95% confidence interval: 27.7% (23.1–32.2%)). Catastrophic effects were detected in the breeding output of all sympatric seabird species, with a total failure for two species. These results provide a new view crucial to predictive models of species abundance and distribution as to how extreme sea ice events might impact an entire community of top predators in polar marine ecosystems in a context of expanding sea ice in eastern Antarctica.


2014 ◽  
Vol 8 (4) ◽  
pp. 1289-1296 ◽  
Author(s):  
I. Eisenman ◽  
W. N. Meier ◽  
J. R. Norris

Abstract. Recent estimates indicate that the Antarctic sea ice cover is expanding at a statistically significant rate with a magnitude one-third as large as the rapid rate of sea ice retreat in the Arctic. However, during the mid-2000s, with several fewer years in the observational record, the trend in Antarctic sea ice extent was reported to be considerably smaller and statistically indistinguishable from zero. Here, we show that much of the increase in the reported trend occurred due to the previously undocumented effect of a change in the way the satellite sea ice observations are processed for the widely used Bootstrap algorithm data set, rather than a physical increase in the rate of ice advance. Specifically, we find that a change in the intercalibration across a 1991 sensor transition when the data set was reprocessed in 2007 caused a substantial change in the long-term trend. Although our analysis does not definitively identify whether this change introduced an error or removed one, the resulting difference in the trends suggests that a substantial error exists in either the current data set or the version that was used prior to the mid-2000s, and numerous studies that have relied on these observations should be reexamined to determine the sensitivity of their results to this change in the data set. Furthermore, a number of recent studies have investigated physical mechanisms for the observed expansion of the Antarctic sea ice cover. The results of this analysis raise the possibility that much of this expansion may be a spurious artifact of an error in the processing of the satellite observations.


Sign in / Sign up

Export Citation Format

Share Document