Chapter 3. Synthesis of Nanoparticles for Biomedical Applications

Author(s):  
Sanjay Singh
2021 ◽  
Vol 12 ◽  
Author(s):  
Rohit Rattan ◽  
Sudeep Shukla ◽  
Bharti Sharma ◽  
Mamta Bhat

Biological entities such as green plants, fungi, and lichens are now a days persistently explored for the synthesis of nanoparticles. Lichen-based nanoparticles are also becoming increasingly popular owing to their biocompatibility, eco-friendliness, and cost-effectiveness. The lichen-based metal nanomaterials, particularly synthesized using green chemistry approaches, have turned out to be great substitutes to conventional antimicrobial therapies. Many scientific reports established the significant antimicrobial properties exhibited by the lichen nanoparticles. Therefore, the present mini-review summarizes an overview of lichen-based nanomaterials, their synthesis, their applications, and the molecular mechanism of their potential as broad spectrum antimicrobial agents for biomedical applications.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1498
Author(s):  
Rimsha Chaudhary ◽  
Khadija Nawaz ◽  
Amna Komal Khan ◽  
Christophe Hano ◽  
Bilal Haider Abbasi ◽  
...  

Algae have long been exploited commercially and industrially as food, feed, additives, cosmetics, pharmaceuticals, and fertilizer, but now the trend is shifting towards the algae-mediated green synthesis of nanoparticles (NPs). This trend is increasing day by day, as algae are a rich source of secondary metabolites, easy to cultivate, have fast growth, and are scalable. In recent era, green synthesis of NPs has gained widespread attention as a safe, simple, sustainable, cost-effective, and eco-friendly protocol. The secondary metabolites from algae reduce, cap, and stabilize the metal precursors to form metal, metal oxide, or bimetallic NPs. The NPs synthesis could either be intracellular or extracellular depending on the location of NPs synthesis and reducing agents. Among the diverse range of algae, the most widely investigated algae for the biosynthesis of NPs documented are brown, red, blue-green, micro and macro green algae. Due to the biocompatibility, safety and unique physico-chemical properties of NPs, the algal biosynthesized NPs have also been studied for their biomedical applications, which include anti-bacterial, anti-fungal, anti-cancerous, anti-fouling, bioremediation, and biosensing activities. In this review, the rationale behind the algal-mediated biosynthesis of metallic, metallic oxide, and bimetallic NPs from various algae have been reviewed. Furthermore, an insight into the mechanism of biosynthesis of NPs from algae and their biomedical applications has been reviewed critically.


The usage of various plant extracts for green synthesis of magnetite nanoparticles, these plant extracts gaining importance day today when compared to the physical and chemical methods of synthesis due to its various advantages such as low cost, biocompatible, biodegradable, non-toxic. They also act as both reducing and capping agents during the synthesis of nanoparticles and this association achieved various pharmaceutical, and other biomedical applications. this study investigates the Plant mediated green synthesized Magnetite Nanoparticles (Fe3O4 NPs) for Antioxidant, antibacterial, Anticancer activities


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Duhita G. Sant ◽  
Tejal R. Gujarathi ◽  
Shrikant R. Harne ◽  
Sougata Ghosh ◽  
Rohini Kitture ◽  
...  

Development of an ecofriendly, reliable, and rapid process for synthesis of nanoparticles using biological system is an important bulge in nanotechnology. Antioxidant potential and medicinal value of Adiantum philippense L. fascinated us to utilize it for biosynthesis of gold and silver nanoparticles (AuNPs and AgNPs). The current paper reports utility of aqueous extract of A. philippense L. fronds for the green synthesis of AuNPs and AgNPs. Effect of various parameters on synthesis of nanoparticles was monitored by UV-Vis spectrometry. Optimum conditions for AuNPs synthesis were 1 : 1 proportion of original extract at pH 11 and 5 mM tetrachloroauric acid, whereas optimum conditions for AgNPs synthesis were 1 : 1 proportion of original extract at pH 12 and 9 mM silver nitrate. Characterization of nanoparticles was done by TEM, SAED, XRD, EDS, FTIR, and DLS analyses. The results revealed that AuNPs and AgNPs were anisotropic. Monocrystalline AuNPs and polycrystalline AgNPs measured 10 to 18 nm in size. EDS and XRD analyses confirmed the presence of elemental gold and silver. FTIR analysis revealed a possible binding of extract to AuNPs through –NH2 group and to AgNPs through C=C group. These nanoparticles stabilized by a biological capping agent could further be utilized for biomedical applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jayanta Kumar Patra ◽  
Kwang-Hyun Baek

Nanobiotechnology is gaining tremendous impetus in this era owing to its ability to modulate metals into their nanosize, which efficiently changes their chemical, physical, and optical properties. Accordingly, considerable attention is being given to the development of novel strategies for the synthesis of different kinds of nanoparticles of specific composition and size using biological sources. However, most of the currently available techniques are expensive, environmentally harmful, and inefficient with respect to materials and energy use. Several factors such as the method used for synthesis, pH, temperature, pressure, time, particle size, pore size, environment, and proximity greatly influence the quality and quantity of the synthesized nanoparticles and their characterization and applications. Additionally, characterization of the synthesized nanoparticles is essential to their potential use in various drug delivery and biomedical applications. The present review highlights various parameters affecting the synthesis of nanoparticles by green nanobiotechnology and different techniques used for characterizing the nanoparticles for their potential use in biomedical and environmental applications.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5686
Author(s):  
Abdulrahman M. Elbagory ◽  
Rahaba Makgotso Marima ◽  
Zodwa Dlamini

The use of nanocarriers for biomedical applications has been gaining interests from researchers worldwide for the delivery of therapeutics in a controlled manner. These “smart” vehicles enhance the dissolution and the bioavailability of drugs and enable their delivery to the target site. Taking the potential toxicity into consideration, the incorporation of natural “green” materials, derived from plants or microbial sources, in the nanocarriers fabrication, improve their safety and biocompatibility. These green components can be used as a mechanical platform or as targeting ligand for the payload or can play a role in the synthesis of nanoparticles. Several studies reported the use of green based nanocarriers for the treatment of diseases such as cancer. This review article provides a critical analysis of the different types of green nanocarriers and their synthesis mechanisms, characterization, and their role in improving drug delivery of anticancer drugs to achieve precision cancer treatment. Current evidence suggests that green-based nanocarriers can constitute an effective treatment against cancer.


2021 ◽  
Author(s):  
Gulzar Ahmed Rather ◽  
Anima Nanda ◽  
Arghya Chakravorty ◽  
Saima Hamid ◽  
Johra Khan ◽  
...  

Abstract Nanobiotechnology has been achieved great significance in terms of nanomedicine & many others. But the first challenge in nanobiotechnology science is the preparation of stable nanoparticles. Presently, many preparation methods have been developed like different chemical & physical processes, but the main drawbacks of these processes are required hazardous chemicals, environmental impact, and ultimately expenses a lot. To overcome these challenges another advanced technology has been developed, which is termed green or biogenic synthesis. This review is discussing the modern approaches of the eco-friendly and cost-effective methodology of green synthesis of nanoparticles by using different eukaryotic & prokaryotic agents like plants, human cell lines, diatoms, algae, fungi, bacteria, viruses, and other organisms. Also, this review gives a clear idea of the different applications of those nanoparticles in drug delivery, dentistry, labeling, diagnostics & sensors.


Sign in / Sign up

Export Citation Format

Share Document