Plant mediated green synthesized Magnetite Nanoparticles (Fe3O4 NPs) for Antioxidant, antibacterial, Anticancer activities-A review

The usage of various plant extracts for green synthesis of magnetite nanoparticles, these plant extracts gaining importance day today when compared to the physical and chemical methods of synthesis due to its various advantages such as low cost, biocompatible, biodegradable, non-toxic. They also act as both reducing and capping agents during the synthesis of nanoparticles and this association achieved various pharmaceutical, and other biomedical applications. this study investigates the Plant mediated green synthesized Magnetite Nanoparticles (Fe3O4 NPs) for Antioxidant, antibacterial, Anticancer activities

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3661 ◽  
Author(s):  
Sherif Fahmy ◽  
Eduard Preis ◽  
Udo Bakowsky ◽  
Hassan Mohamed Azzazy

Palladium nanoparticles (Pd NPs) showed great potential in biomedical applications because of their unique physicochemical properties. Various conventional physical and chemical methods have been used for the synthesis of Pd NPs. However, these methods include the use of hazardous reagents and reaction conditions, which may be toxic to health and to the environment. Thus, eco-friendly, rapid, and economic approaches for the synthesis of Pd NPs have been developed. Bacteria, fungi, yeast, seaweeds, plants, and plant extracts were used to prepare Pd NPs. This review highlights the most recent studies for the biosynthesis of Pd NPs, factors controlling their synthesis, and their potential biomedical applications.


2016 ◽  
Vol 20 (17) ◽  
pp. 1797-1812 ◽  
Author(s):  
Xiaoyue Yu ◽  
Cuie Tang ◽  
Shanbai Xiong ◽  
Qijuan Yuan ◽  
Zhipeng Gu ◽  
...  

Author(s):  
Geetanjali Singh ◽  
Pramod Kumar Sharma ◽  
Rishabha Malviya

Aim/Objective: The author writes the manuscript by reviewing the literatures related to the biomedical application of metallic nanoparticles. The term metal nanoparticles are used to describe the nanosized metals with the dimension within the size range of 1-100 nm. Methods: The preparation of metallic nanoparticles and their application is an influential area for research. Among various physical and chemical methods (viz. chemical reduction, thermal decomposition, etc.) for synthesizing silver nanoparticles, biological methods have been suggested as possible eco-friendly alternatives. The synthesis of metallic nanoparticles is having many problems inclusive of solvent toxicity, the formation of hazardous byproducts and consumption of energy. So it is important to design eco-friendly benign procedures for the synthesis of metallic nanoparticles. Results: From the literature survey, we concluded that metallic nanoparticles have applications in the treatment of different diseases. Metallic nanoparticles are having a great advantage in the detection of cancer, diagnosis, and therapy. And it can also have properties such as antifungal, antibacterial, anti-inflammatory, antiviral and anti-angiogenic. Conclusion: In this review, recent upcoming advancement of biomedical application of nanotechnology and their future challenges has been discussed.


Author(s):  
LATIF MS ◽  
ABBAS S ◽  
KORMIN F ◽  
MUSTAFA MK

The use of metal nanoparticles (MNPs) in various fields is increasing day-by-day leading to a genuine concern about the issues related to their environmental and biological safety. The major approaches for the synthesis of NPs include physical and chemical methods which are expensive and hazardous to health in addition to being toxic to the environment. This review highlights the potential of plant extracts to carry out the synthesis of MNPs with a special emphasis on the role of flavonoids in nanosynthesis. This green and clean approach have been actively utilized in recent years as an alternative to conventional hazardous approaches. It has proved as cost-effective, non-toxic, less time and labor consuming, efficient, and eco-friendly method for the synthesis of MNPs with specific biological actions. This review also focuses on the role of polyphenols, including the flavonoids as bioreductants of metal salts for the synthesis of NPs along with their biomedical applications. Various examples of the MNPs, along with their biological actions, have also been summarized.


2019 ◽  
Vol 25 (24) ◽  
pp. 2650-2660 ◽  
Author(s):  
Rajasree Shanmuganathan ◽  
Indira Karuppusamy ◽  
Muthupandian Saravanan ◽  
Harshiny Muthukumar ◽  
Kumar Ponnuchamy ◽  
...  

Generally, silver is considered as a noble metal used for treating burn wound infections, open wounds and cuts. However, the emerging nanotechnology has made a remarkable impact by converting metallic silver into silver nanoparticles (AgNPs) for better applications. The advancement in technology has improved the synthesis of NPs using biological method instead of physical and chemical methods. Nonetheless, synthesizing AgNPs using biological sources is ecofriendly and cost effective. Till date, AgNPs are widely used as antibacterial agents; therefore, a novel idea is needed for the successful use of AgNPs as therapeutic agents to uncertain diseases and infections. In biomedicine, AgNPs possess significant advantages due to their physical and chemical versatility. Indeed, the toxicity concerns regarding AgNPs have created the need for non-toxic and ecofriendly approaches to produce AgNPs. The applications of AgNPs in nanogels, nanosolutions, silver based dressings and coating over medical devices are under progress. Still, an improvised version of AgNPs for extended applications in an ecofriendly manner is the need of the hour. Therefore, the present review emphasizes the synthesis methods, modes of action under dissipative conditions and the various biomedical applications of AgNPs in detail.


Author(s):  
Angela SPOIALA ◽  
Denisa FICAI ◽  
Anton FICAI ◽  
Luminita CRACIUN ◽  
Aurel Mihail TITU ◽  
...  

This paper aims to review the challenges, toxicity, and routes of synthesis and usage of silver nanoparticles in different applications but also highlighting their sustainability from both medical and environmental issues. Regarding their toxicity, it is known that silver nanoparticles can destroy over 650 microorganisms comparing with antibiotics. Supplementary, will be presented in a comparative manner some conventional synthesis routes (physical and chemical methods) and green synthesis routes using plant extracts. The approach using plant extracts have various advantages comparing with physical, chemical and microbial synthesis methods because there is no need to use chemicals, wasteful purifications and high energy requirements. The paper presents an overview on “green nanotechnology” focused on using either biological micro-organisms or plant extracts as an alternative to the classical chemical and physical methods. An important issue discussed in the paper is an overview of the synthesis routes of silver nanoparticles, some expected applications of silver based active agents and their toxicity and challenges that must be overcome. Also, it needs to focus our attention on the dismissal of silver nanoparticles into the environment and especially in water systems, fact which suggests that this issue must be fully understood and applied the law.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yunhui Bao ◽  
Jian He ◽  
Ke Song ◽  
Jie Guo ◽  
Xianwu Zhou ◽  
...  

Metal nanoparticles (MNPs) have been widely used in several fields including catalysis, bioengineering, photoelectricity, antibacterial, anticancer, and medical imaging due to their unique physical and chemical properties. In the traditional synthesis method of MNPs, toxic chemicals are generally used as reducing agents and stabilizing agents, which is fussy to operate and extremely environment unfriendly. Based on this, the development of an environment-friendly synthesis method of MNPs has recently attracted great attention. The use of plant extracts as reductants and stabilizers to synthesize MNPs has the advantages of low cost, environmental friendliness, sustainability, and ease of operation. Besides, the as-synthesized MNPs are nontoxic, more stable, and more uniform in size than the counterparts prepared by the traditional method. Thus, green preparation methods have become a research hotspot in the field of MNPs synthesis. In this review, recent advances in green synthesis of MNPs using plant extracts as reductants and stabilizers have been systematically summarized. In addition, the insights into the potential applications and future development for MNPs prepared by using plant extracts have been provided.


Author(s):  
N.B. Singh ◽  
Preeti Jain ◽  
Anindita De ◽  
Richa Tomar

: It is an age of nanomaterials. Nanotechnology has revolutionized the scientific world. Every sphere of technology has benefited a lot by using nanomaterials. Number of physical and chemical methods is being used for the synthesis of nanomaterials. In recent years much emphasis is given for green synthesis particularly by using plant extracts or microorganism. This is useful for promoting environmental sustainability. Microwave heating and ultrasound techniques are also being used for the synthesis of different type of nanomaterials. Green synthesis is an advance method of synthesizing nanomaterials over other methods because of simplicity, lower cost and relatively reproducible. Plants produce more stable nanoparticles compared to other means and it is very straightforward to scale up. The risk of contamination is also lower. In this article different method of green synthesis of nanomaterials, and applications have been reviewed and discussed.


2016 ◽  
Vol 5 (6) ◽  
Author(s):  
Agbaje Lateef ◽  
Sunday A. Ojo ◽  
Joseph A. Elegbede

AbstractNanotechnology has remained relevant as a multifacet discipline, which cuts across different areas of science and technology. Several successful attempts had been documented regarding the involvement of biological materials in the green synthesis of various metal nanoparticles (MeNPs) because of their eco-friendliness, cost-effectiveness, safe handling, and ultimately less toxicity as opposed to the physical and chemical methods with their concomitant problems. Biological agents, including bacteria, fungi, algae, enzymes, plants, and their extracts, have been implicated in most cases by several authors. Moreover, nanotechnology in recent times has also made an inroad for animal species, specifically arthropods and metabolites thereof to be used as excellent candidates for the green synthesis of MeNPs. The increasing literature on the use of metabolites of arthropods for the green synthesis of nanoparticles has necessitated the need to document a review on their relevance in nanobiotechnology. The review, which represents the first of its kind, seeks to underscore the importance of arthropods in the multidisciplinary subject of nanoscience and nanotechnology.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 171
Author(s):  
Alicia Rosales ◽  
Karen Esquivel

Titanium dioxide is well known for its photocatalytic properties and low toxicity, meanwhile, silicone dioxide exhibits hydrophobic and hydrophilic properties and thermal stability. The union of these two materials offers a composite material with a wide range of applications that relate directly to the combined properties. The SiO2-TiO2 composite has been synthesized through physical methods and chemical methods and, with adequate conditions, morphology, crystallinity, boundaries between SiO2-TiO2, among other properties, can be controlled. Thus, the applications of this composite are wide for surface applications, being primarily used as powder or coating. However, the available research information on this kind of composite material is still novel, therefore research in this field is still needed in order to clarify all the physical and chemical properties of the material. This review aims to encompass the available methods of synthesis of SiO2-TiO2 composite with modifiers or dopants, the application and known chemical and physical properties in surfaces such as glass, mortar and textile, including aspects for the development of this material.


Sign in / Sign up

Export Citation Format

Share Document