PsbS-specific zeaxanthin-independent changes in fluorescence emission spectrum as a signature of energy-dependent non-photochemical quenching in higher plants

2010 ◽  
Vol 9 (5) ◽  
pp. 697 ◽  
Author(s):  
Ismayil S. Zulfugarov ◽  
Altanzaya Tovuu ◽  
Bolormaa Dogsom ◽  
Chung Yeol Lee ◽  
Choon-Hwan Lee
2021 ◽  
Vol 22 (6) ◽  
pp. 2969
Author(s):  
Aurélie Crepin ◽  
Edel Cunill-Semanat ◽  
Eliška Kuthanová Trsková ◽  
Erica Belgio ◽  
Radek Kaňa

Antenna protein aggregation is one of the principal mechanisms considered effective in protecting phototrophs against high light damage. Commonly, it is induced, in vitro, by decreasing detergent concentration and pH of a solution of purified antennas; the resulting reduction in fluorescence emission is considered to be representative of non-photochemical quenching in vivo. However, little is known about the actual size and organization of antenna particles formed by this means, and hence the physiological relevance of this experimental approach is questionable. Here, a quasi-single molecule method, fluorescence correlation spectroscopy (FCS), was applied during in vitro quenching of LHCII trimers from higher plants for a parallel estimation of particle size, fluorescence, and antenna cluster homogeneity in a single measurement. FCS revealed that, below detergent critical micelle concentration, low pH promoted the formation of large protein oligomers of sizes up to micrometers, and therefore is apparently incompatible with thylakoid membranes. In contrast, LHCII clusters formed at high pH were smaller and homogenous, and yet still capable of efficient quenching. The results altogether set the physiological validity limits of in vitro quenching experiments. Our data also support the idea that the small, moderately quenching LHCII oligomers found at high pH could be relevant with respect to non-photochemical quenching in vivo.


Ocean Science ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 83-91 ◽  
Author(s):  
L. Biermann ◽  
C. Guinet ◽  
M. Bester ◽  
A. Brierley ◽  
L. Boehme

Abstract. Under high light intensity, phytoplankton protect their photosystems from bleaching through non-photochemical quenching processes. The consequence of this is suppression of fluorescence emission, which must be corrected when measuring in situ yield with fluorometers. We present data from the Southern Ocean, collected over five austral summers by 19 southern elephant seals tagged with fluorometers. Conventionally, fluorescence data collected during the day (quenched) were corrected using the limit of the mixed layer, assuming that phytoplankton are uniformly mixed from the surface to this depth. However, distinct deep fluorescence maxima were measured in approximately 30% of the night (unquenched) data. To account for the evidence that chlorophyll is not uniformly mixed in the upper layer, we propose correcting from the limit of the euphotic zone, defined as the depth at which photosynthetically available radiation is ~ 1% of the surface value. Mixed layer depth exceeded euphotic depth over 80% of the time. Under these conditions, quenching was corrected from the depth of the remotely derived euphotic zone Zeu, and compared with fluorescence corrected from the depth of the density-derived mixed layer. Deep fluorescence maxima were evident in only 10% of the day data when correcting from mixed layer depth. This was doubled to 21% when correcting from Zeu, more closely matching the unquenched (night) data. Furthermore, correcting from Zeu served to conserve non-uniform chlorophyll features found between the 1% light level and mixed layer depth.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Li Jin ◽  
Ying Wang ◽  
Fengkai Yan ◽  
Jianpo Zhang ◽  
Fangli Zhong

Nitrogen-doped graphene quantum dots had been successfully synthesized and characterized by using transmission electron microscope, X-ray photoelectron spectroscopy, absorbance spectrum, fluorescence emission spectrum, and fluorescence decay curve. TEM results indicated that the diameters of the as-prepared nitrogen-doped graphene quantum dots were in the range of 2 - 5 nm and the lattice space is about 0.276 nm; Raman spectrum result indicated that there were two characteristic peaks, generally named D (~1408 cm−1) and G (~1640 cm−1) bands; both TEM and Raman spectrum results indicated that the as-synthesized product was graphene quantum dots. Deconvoluted high resolution XPS spectra for C1s, O1s, and N1s results indicated that there are -NH-, -COOH, and -OH groups on the surface of nitrogen-doped graphene quantum dot. Fluorescence emission spectrum indicated that the maximum fluorescence emission spectrum of nitrogen-doped graphene quantum dots was blue shift about 30.1 nm and the average fluorescence decay time of nitrogen-doped graphene quantum dots increased about 2 ns, compared with graphene quantum dots without doping of nitrogen. Then, the as-prepared nitrogen-doped graphene quantum dots were used to quantitatively analyze brilliant blue based on the fluorescent quenching of graphene quantum dots, and the effect of pH and reaction time on this fluorescent quenching system was also obtained. Under selected condition, the linear regression equations were F0/F=0.0087 (brilliant blue) + 0.9553 and F0/F=0.01205 (brilliant blue) + 0.6695, and low detection limit was 3.776 μmol/L (3.776 nmol/mL). Once more diluted N-GQDs (0.05 mg/mL) were used, the low detection limit could reach 94.87 nmol/L. Then, temperature-dependent experiment, absorbance spectra, and dynamic fluorescence quenching rate constant were used to study the quenching mechanism; all results indicated that this quenching process was a static quenching process based on the formation of complex between nitrogen-doped graphene quantum dots and brilliant blue through hydrogen bond. Particularly, this method was used to quantitatively analyze the wine sample, of which results have a high consistence with the results of the spectrophotometric method; demonstrating this fluorescence quenching method could be used in practical sample application.


2019 ◽  
Vol 43 (23) ◽  
pp. 9090-9105 ◽  
Author(s):  
Kannan Ramamurthy ◽  
E. J. Padma Malar ◽  
Chellappan Selvaraju

Fluorescence emission spectrum of ketocoumarin dimers in an alcohol:water binary mixture and the solid state.


2010 ◽  
Vol 37 (9) ◽  
pp. 859 ◽  
Author(s):  
Raquel Esteban ◽  
Shizue Matsubara ◽  
María Soledad Jiménez ◽  
Domingo Morales ◽  
Patricia Brito ◽  
...  

Two xanthophyll cycles are present in higher plants: the ubiquitous violaxanthin (V) cycle and the taxonomically restricted lutein epoxide (Lx) cycle. Conversions of V to zeaxanthin (Z) in the first and Lx to lutein (L) in the second happen in parallel under illumination. Unlike the V cycle, in which full epoxidation is completed overnight, in the Lx cycle, this reaction has been described as irreversible on a daily basis in most species (the ‘truncated’ Lx cycle). However, there are some species that display complete restoration of Lx overnight (‘true’ Lx cycle). So far, little is known about the physiological meaning of these two versions of the Lx cycle. Therefore, in the present work, the ‘true’ Lx cycle operation was studied in seedlings of Ocotea foetens (Aiton) Benth. under controlled and field conditions. Complete overnight recovery of the Lx pool in the presence of norfluorazon suggested that the inter-conversions between Lx and L represent a true cycle in this species. Furthermore, Lx responded dynamically to environmental conditions during long-term acclimation. Our data demonstrate the operation of a ‘true’ Lx cycle and, for the first time, its potential involvement in the regulation of non-photochemical quenching in situ. We propose dual regulation of Lx cycle in O. foetens, in which the extent of Lx restoration depends on the intensity and duration of illumination.


2019 ◽  
Vol 43 (21) ◽  
pp. 8132-8145 ◽  
Author(s):  
Parisa Mokaberi ◽  
Vida Reyhani ◽  
Zeinab Amiri-Tehranizadeh ◽  
Mohammad Reza Saberi ◽  
Sima Beigoli ◽  
...  

Demonstrates the overlap that had been induced between the fluorescence emission spectrum of Hb and the absorption spectrum of drugs, which has proved that there is a high probability to the occurrence of energy transfer from Hb and LMF in the absence and presence of NRF.


2014 ◽  
Vol 11 (3) ◽  
pp. 1243-1264 ◽  
Author(s):  
L. Biermann ◽  
C. Guinet ◽  
M. Bester ◽  
A. Brierley ◽  
L. Boehme

Abstract. Under high light intensity, phytoplankton protect their photosystems from bleaching through non-photochemical quenching processes. The consequence of this is suppression of fluorescence emission, which must be corrected when measuring in situ yield with fluorometers. Previously, this has been done using the limit of the mixed layer, assuming that phytoplankton are uniformly mixed from the surface to this depth. However, the assumption of homogeneity is not robust in oceanic regimes that support deep chlorophyll maxima. To account for these features, we correct from the limit of the euphotic zone, defined as the depth at which light is at ~1% of the surface value. This method was applied to fluorescence data collected by eleven animal-borne fluorometers deployed in the Southern Ocean over four austral summers. Six tags returned data showing evidence of deep chlorophyll features. Using the depth of the euphotic layer, quenching was corrected without masking subsurface fluorescence signals.


Sign in / Sign up

Export Citation Format

Share Document