Polysaccharide-assisted incorporation of multiwalled carbon nanotubes into sol–gel silica matrix for electrochemical sensing

2011 ◽  
Vol 21 (12) ◽  
pp. 4650 ◽  
Author(s):  
Li-Ming Zhang ◽  
Guan-Hai Wang ◽  
Zheng Xing
Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 285
Author(s):  
Lingfei Li ◽  
Qiu Sun ◽  
Xiangqun Chen ◽  
Zhaohua Jiang ◽  
Yongjun Xu

The low dielectric constant of the nonpolar polymer poly(1-butene) (PB-1) limits its application as a diaphragm element in energy storage capacitors. In this work, Ba(Zr0.2Ti0.8)O3-coated multiwalled carbon nanotubes (BZT@MWCNTs) were first prepared by using the sol–gel hydrothermal method and then modified with polydopamine (PDA) via noncovalent polymerization. Finally, PB-1 matrix composite films filled with PDA-modified BZT@MWCNTs nanoparticles were fabricated through a solution-casting method. Results indicated that the PDA-modified BZT@MWCNTs had good dispersion and binding force in the PB-1 matrix. These characteristics improved the dielectric and energy storage performances of the films. Specifically, the PDA-modified 10 vol% BZT@ 0.5 vol% MWCNTs/PB-1 composite film exhibited the best dielectric performance. At 1 kHz, the dielectric constant of this film was 25.43, which was 12.7 times that of pure PB-1 films. Moreover, its dielectric loss was 0.0077. Furthermore, under the weak electric field of 210 MV·m−1, the highest energy density of the PDA-modified 10 vol% BZT@ 0.5 vol% MWCNTs/PB-1 composite film was 4.57 J·cm−3, which was over 3.5 times that of PB-1 film (≈1.3 J·cm−3 at 388 MV·m−1).


2014 ◽  
Vol 809-810 ◽  
pp. 43-52
Author(s):  
Hua Hua Wang ◽  
Nan Li ◽  
Kai Li ◽  
Yuan Bu ◽  
Wen Le Dai ◽  
...  

Multiwalled carbon nanotubes (MWCNTs) as an excellent supporter covered with a thick layer of cobalt phthalocyanine (CoPc) were prepared by in-situ synthesis. Platinum particles were adopted to enhance the conductivity of CoPc-MWCNTs. The final nanocomposite Pt-CoPc-MWCNTs was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Strong aromatic π-π stacking between MWCNTs and CoPc made CoPc in-situ forming on MWCNTs. With homogeneous thickness of CoPc covered on the MWCNTs and Pt particles equally distributed, the nanocomposite was used as electrocatalyst. The electrochemical properties of the composite got researched by casting the dispersion of Pt-CoPc-MWCNTs on the glassy carbon electrode. Compared with other modified electrodes, Pt-CoPc-MWCNTs/GC electrode exhibited excellent electrochemical activity towards dopamine (DA) and uric acid (UA). Linear responses for DA and UA were obtained in the ranges of 5 to 170 μM and 5 to 100 μM, and limits of detection were 2.6 and 1.4 μM (S/N= 3), respectively. Simultaneous detection of DA and UA in the presence of ascorbic acid (AA) also displayed selective property, with no interference to each other.


2021 ◽  
Vol 11 (19) ◽  
pp. 9256
Author(s):  
Michał Chodkowski ◽  
Iryna Ya. Sulym ◽  
Konrad Terpiłowski ◽  
Dariusz Sternik

In this paper, we focus on fabrication and physicochemical properties investigations of silica–multiwalled carbon nanotubes/poly(dimethylsiloxane) composite coatings deposited on the glass supports activated by cold plasma. Air or argon was used as the carrier gas in the plasma process. Multiwalled carbon nanotubes were modified with poly(dimethylsiloxane) in order to impart their hydrophobicity. The silica–multiwalled carbon nanotubes/poly(dimethylsiloxane) nanocomposite was synthesized using the sol–gel technique with acid-assisted tetraethyl orthosilicate hydrolysis. The stability and the zeta potential of the obtained suspension were evaluated. Then, the product was dried and used as a filler in another sol–gel process, which led to the coating application via the dip-coating method. The substrates were exposed to the hexamethyldisilazane vapors in order to improve their hydrophobicity. The obtained surfaces were characterized by the wettability measurements and surface free energy determination as well as optical profilometry, scanning electron microscopy, and transmittance measurements. In addition, the thermal analyses of the carbon nanotubes as well as coatings were made. It was found that rough and hydrophobic coatings were obtained with a high transmittance in the visible range. They are characterized by the water contact angle larger than 90 degrees and the transmission at the level of 95%. The X-ray diffraction studies as well as scanning electron microscopy images confirmed the chemical and structural compositions of the coatings. They are thermally stable at the temperature up to 250 °C. Moreover, the thermal analysis showed that the obtained composite material has greater thermal resistance than the pure nanotubes.


2017 ◽  
Vol 42 (26) ◽  
pp. 16495-16513 ◽  
Author(s):  
Manoj Pudukudy ◽  
Zahira Yaakob ◽  
Abudukeremu Kadier ◽  
Mohd Sobri Takriff ◽  
Nik Suhaimi Mat Hassan

2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Shukui Zhu ◽  
Ting Tong ◽  
Wanfeng Zhang ◽  
Wei Dai ◽  
Sheng He ◽  
...  

A simple and efficient method to analyze the volatile and semivolatile organic compounds in crude oils has been developed based on direct immersion solid-phase microextraction coupled to comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (DI-SPME-GC × GC/TOFMS). A novel fiber, multiwalled carbon nanotubes/hydroxyl-terminated silicone oil (MWNTs-TSO-OH), was prepared by sol-gel technology. Using standard solutions, the extraction conditions were optimized such as extraction mode, extraction temperature, extraction time, and salts effect. With the optimized conditions, a real crude oil sample was extracted and then analyzed in detail. It shows that the proposed method is very effective in simultaneously analyzing the normal and branched alkanes, cycloalkanes, aromatic hydrocarbons, and biomarkers of crude oil such as steranes and terpanes. Furthermore, the method showed good linearity (r> 0.999), precision (RSD < 8%), and detection limits ranging from 0.2 to 1.6 ng/L.


Sign in / Sign up

Export Citation Format

Share Document