A long wavelength hydrophobic probe for intracellular lipid droplets

The Analyst ◽  
2014 ◽  
Vol 139 (1) ◽  
pp. 52-54 ◽  
Author(s):  
Jingying Zhai ◽  
Yawen Zhang ◽  
Chenye Yang ◽  
Yanmei Xu ◽  
Yu Qin
2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Ryotaro Maeda ◽  
Daisuke Kami ◽  
Akira Shikuma ◽  
Yosuke Suzuki ◽  
Toshihiko Taya ◽  
...  

AbstractThe RNA decay pathway plays key regulatory roles in cell identities and differentiation processes. Although adipogenesis is transcriptionally and epigenetically regulated and has been thoroughly investigated, how RNA metabolism that contributes to the stability of phenotype-shaping transcriptomes participates in differentiation remains elusive. In this study, we investigated Ddx6, an essential component of processing bodies (PBs) that executes RNA decay and translational repression in the cytoplasm and participates in the cellular transition of reprogramming. Upon adipogenic induction, Ddx6 dynamically accumulated to form PBs with a binding partner, 4E-T, at the early phase prior to emergence of intracellular lipid droplets. In contrast, preadipocytes with Ddx6 knockout (KO) or 4E-T knockdown (KD) failed to generate PBs, resulting in significant suppression of adipogenesis. Transcription factors related to preadipocytes and negative regulators of adipogenesis that were not expressed under adipogenic stimulation were maintained in Ddx6-KO and 4E-T-KD preadipocytes under adipogenic induction. Elimination of Dlk1, a major negative regulator of adipogenesis, in 3T3L1 Ddx6-KO cells did not restore adipogenic differentiation capacity to any extent. Similar to murine cells, human primary mesenchymal stem cells, which can differentiate into adipocytes upon stimulation with adipogenic cocktails, required DDX6 to maturate into adipocytes. Therefore, RNA decay of the entire parental transcriptome, rather than removal of a strong negative regulator, could be indispensable for adipogenesis.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 769
Author(s):  
Yuko Hara ◽  
Kenichi Goda ◽  
Shinichi Hirooka ◽  
Takehiro Mitsuishi ◽  
Masahiro Ikegami ◽  
...  

We previously reported that superficial non-ampullary duodenal tumors (SNADETs) commonly had a whitish mucosal surface, named milk-white mucosa (MWM). The aim of this study was to evaluate the association of MWM with epithelial intracellular lipid droplets (immunohistochemically stained by adipose differentiation-related protein (ADRP)) and histological tumor grades. We reviewed endoscopic images and the histopathology of SNADETs resected en bloc endoscopically. We analyzed the correlation between the positive rates of endoscopic MWM in preoperative endoscopy and resected specimens, and ADRP-positive rates in the resected specimens. Associations between the MWM-positive rates and tumor grades, high-grade intraepithelial neoplasia (HGIN)/intramucosal carcinoma (IC), and low-grade intraepithelial neoplasia (LGIN) were analyzed. All the 92 SNADETs analyzed were <20 mm and histologically classified into 39 HGIN/IC and 53 LGIN. Spearman’s rank correlation coefficient showed a significant correlation between MWM-positive and ADRP-positive rates (p < 0.001). MWM-positive rates were significantly lower in the HGIN/IC than in the LGIN in preoperative endoscopy (p < 0.001) and resected specimens (p = 0.02). Our results suggest that endoscopic MWM is closely associated with epithelial intracellular lipid droplets and that the MWM-positive rate may be a predictor of histological grade in small SNADETs.


2017 ◽  
Vol 28 (5) ◽  
pp. 1363-1370 ◽  
Author(s):  
Hanna Appelqvist ◽  
Kati Stranius ◽  
Karl Börjesson ◽  
K. Peter. R. Nilsson ◽  
Christine Dyrager

2020 ◽  
Author(s):  
Ravinder Kumar ◽  
Muhammad Arifur Rahman ◽  
Taras Y. Nazarko

AbstractIn yeast, the selective autophagy of intracellular lipid droplets (LDs) or lipophagy can be induced by either nitrogen (N) starvation or carbon limitation (e.g. in the stationary (S) phase). We developed the yeast, Komagataella phaffii (formerly Pichia pastoris), as a new lipophagy model and compared the N-starvation and S-phase lipophagy in over 30 autophagy-related mutants using the Erg6-GFP processing assay. Surprisingly, two lipophagy pathways had hardly overlapping stringent molecular requirements. While the N-starvation lipophagy strictly depended on the core autophagic machinery (Atg1-Atg9, Atg18 and Vps15), vacuole fusion machinery (Vam7 and Ypt7) and vacuolar proteolysis (proteinases A and B), only Atg6 and proteinases A and B were essential for the S-phase lipophagy. The rest of the proteins were only partially required in the S-phase. Moreover, we isolated the prl1 (for positive regulator of lipophagy 1) mutant affected in the S-phase lipophagy but not N-starvation lipophagy. The prl1 defect was at a stage of delivery of the LDs from the cytoplasm to the vacuole further supporting mechanistically different nature of the two lipophagy pathways. Taken together, our results suggest that N-starvation and S-phase lipophagy have distinct molecular mechanisms.


Hepatology ◽  
2008 ◽  
Vol 48 (1) ◽  
pp. 16-27 ◽  
Author(s):  
Aurélie Piodi ◽  
Philippe Chouteau ◽  
Hervé Lerat ◽  
Christophe Hézode ◽  
Jean‐Michel Pawlotsky

2020 ◽  
Vol 61 (3) ◽  
pp. 422-431 ◽  
Author(s):  
Lahoucine Izem ◽  
Yan Liu ◽  
Richard E. Morton

Cholesteryl ester transfer protein (CETP) exists as full-length (FL) and exon 9 (E9)-deleted isoforms. The function of E9-deleted CETP is poorly understood. Here, we investigated the role of E9-deleted CETP in regulating the secretion of FL-CETP by cells and explored its possible role in intracellular lipid metabolism. CETP overexpression in cells that naturally express CETP confirmed that E9-deleted CETP is not secreted, and showed that cellular FL- and E9-deleted CETP form an isolatable complex. Coexpression of CETP isoforms lowered cellular levels of both proteins and impaired FL-CETP secretion. These effects were due to reduced synthesis of both isoforms; however, the predominate consequence of FL- and E9-deleted CETP coexpression is impaired FL-CETP synthesis. We reported previously that reducing both CETP isoforms or overexpressing FL-CETP impairs cellular triglyceride (TG) storage. To investigate this further, E9-deleted CETP was expressed in SW872 cells that naturally synthesize CETP and in mouse 3T3-L1 cells that do not. E9-deleted CETP overexpression stimulated SW872 triglyceride synthesis and increased stored TG 2-fold. Expression of E9-deleted CETP in mouse 3T3-L1 cells produced a similar lipid phenotype. In vitro, FL-CETP promotes the transfer of TG from ER-enriched membranes to lipid droplets. E9-deleted CETP also promoted this transfer, although less effectively, and it inhibited the transfer driven by FL-CETP. We conclude that FL- and E9-deleted CETP isoforms interact to mutually decrease their intracellular levels and impair FL-CETP secretion by reducing CETP biosynthesis. E9-deleted CETP, like FL-CETP, alters cellular TG metabolism and storage but in a contrary manner.


Lipids ◽  
2010 ◽  
Vol 45 (6) ◽  
pp. 465-477 ◽  
Author(s):  
Avery L. McIntosh ◽  
Stephen M. Storey ◽  
Barbara P. Atshaves

2020 ◽  
Vol 21 (7) ◽  
pp. 2332 ◽  
Author(s):  
Marta Bou ◽  
Xinxia Wang ◽  
Marijana Todorčević ◽  
Tone-Kari Knutsdatter Østbye ◽  
Jacob Torgersen ◽  
...  

The present study aimed to elucidate how Atlantic salmon adipocytes pre-enriched with palmitic (16:0, PA), oleic (18:1n−9, OA), or eicosapentaenoic (20:5n−3, EPA) acid respond to a fasting condition mimicked by nutrient deprivation and glucagon. All experimental groups were supplemented with radiolabeled PA to trace secreted lipids and distribution of radioactivity in different lipid classes. There was a higher content of intracellular lipid droplets in adipocytes pre-enriched with OA than in adipocytes pre-enriched with PA or EPA. In the EPA group, the radiolabeled PA was mainly esterified in phospholipids and triacylglycerols, whereas in the OA and PA groups, the radioactivity was mainly recovered in phospholipids and cholesterol-ester. By subjecting the experimental groups to nutrient-deprived media supplemented with glucagon, lipolysis occurred in all groups, although to a lower extent in the OA group. The lipids were mainly secreted as esterified lipids in triacylglycerols and phospholipids, indicating mobilization in lipoproteins. A significant proportion was secreted as free fatty acids and glycerol. Leptin secretion was reduced in all experimental groups in response to fasting, while the mitochondria area responded to changes in the energy supply and demand by increasing after 3 h of fasting. Overall, different lipid classes in adipocytes influenced their mobilization during fasting.


1985 ◽  
Vol 100 (3) ◽  
pp. 965-973 ◽  
Author(s):  
P Greenspan ◽  
E P Mayer ◽  
S D Fowler

We report that the dye nile red, 9-diethylamino-5H-benzo[alpha]phenoxazine-5-one, is an excellent vital stain for the detection of intracellular lipid droplets by fluorescence microscopy and flow cytofluorometry. The specificity of the dye for lipid droplets was assessed on cultured aortic smooth muscle cells and on cultured peritoneal macrophages that were incubated with acetylated low density lipoprotein to induce cytoplasmic lipid overloading. Better selectivity for cytoplasmic lipid droplets was obtained when the cells were viewed for yellow-gold fluorescence (excitation, 450-500 nm; emission, greater than 528 nm) rather than red fluorescence (excitation, 515-560 nm; emission, greater than 590 nm). Nile red-stained, lipid droplet-filled macrophages exhibited greater fluorescence intensity than did nile red-stained control macrophages, and the two cell populations could be differentiated and analyzed by flow cytofluorometry. Such analyses could be performed with either yellow-gold or red fluorescence, but when few lipid droplets per cell were present, the yellow-gold fluorescence was more discriminating. Nile red exhibits properties of a near-ideal lysochrome. It is strongly fluorescent, but only in the presence of a hydrophobic environment. The dye is very soluble in the lipids it is intended to show, and it does not interact with any tissue constituent except by solution. Nile red can be applied to cells in an aqueous medium, and it does not dissolve the lipids it is supposed to reveal.


2001 ◽  
Vol 289 (5) ◽  
pp. 1168-1174 ◽  
Author(s):  
Tsorng-Harn Fong ◽  
Ching-Hsiang Wu ◽  
E-Wen Liao ◽  
Chiu-Yun Chang ◽  
Man-Hui Pai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document