Camptothecin prodrug block copolymer micelles with high drug loading and target specificity

2014 ◽  
Vol 5 (18) ◽  
pp. 5320-5329 ◽  
Author(s):  
Adnan R. Khan ◽  
Johannes Pall Magnusson ◽  
Sue Watson ◽  
Anna M. Grabowska ◽  
Robert W. Wilkinson ◽  
...  

The effects of a novel functional reducible camptothecin (CPT) block copolymer conjugate, targeting luteinizing hormone releasing hormone receptor (LHRHR) were evaluated against differing LHRHR expressing tumour cell lines and immune populations.

2019 ◽  
Vol 7 (37) ◽  
pp. 5677-5687 ◽  
Author(s):  
Li Zhang ◽  
Dongjian Shi ◽  
Chunling Shi ◽  
Tatsuo Kaneko ◽  
Mingqing Chen

A novel multi-arm polyphosphoester-based nanomaterial provides high drug loading efficiency and sustained-release drug delivery for effective chemotherapy.


2015 ◽  
Vol 3 (5) ◽  
pp. 814-823 ◽  
Author(s):  
X.-L. Sun ◽  
P.-C. Tsai ◽  
R. Bhat ◽  
E. M. Bonder ◽  
B. Michniak-Kohn ◽  
...  

Residue structure affects the physicochemical properties, drug loading efficiency, and thermoresponsive drug release profiles of block copolymer micelles with pyrrolidone-based polymer cores.


2006 ◽  
Vol 6 (2) ◽  
pp. 179-186 ◽  
Author(s):  
Woo Sun Shim ◽  
Sung Wan Kim ◽  
Eun-Kyung Choi ◽  
Heon-Joo Park ◽  
Jin-Seok Kim ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Hardeep S. Oberoi ◽  
Natalia V. Nukolova ◽  
Yi Zhao ◽  
Samuel M. Cohen ◽  
Alexander V. Kabanov ◽  
...  

The therapeutic performance of oxaliplatin can be improved by incorporating the central cis-dichloro(1,2-diaminocyclohexane)platinum(II) (DACHPt) motif into the core cross-linked block copolymer micelles. We describe here the preparation, cellular uptake, and in vivo evaluation of core cross-linked micelles loaded with DACHPt. Stable drug-loaded micelles were prepared at high drug loading (~25 w/w%) and displayed a considerably increased in vitro cytotoxicity compared to free oxaliplatin against A2780 ovarian cancer cells. The DACHPt-loaded micelle formulation was well tolerated in mice and exhibited improved antitumor activity than oxaliplatin alone in an ovarian tumor xenograft model.


2018 ◽  
Author(s):  
Robert Luxenhofer ◽  
Michael M Lübtow ◽  
Lukas Hahn ◽  
Thomas Lorson ◽  
Rainer Schobert

Many natural compounds with interesting biomedical properties share one physicochemical property, namely a low water solubility. Polymer micelles are, among others, a popular means to solubilize hydrophobic compounds. The specific molecular interactions between the polymers and the hydrophobic drugs are diverse and recently it has been discussed that macromolecular engineering can be used to optimize drug loaded micelles. Specifically, π-π stacking between small molecules and polymers has been discussed as an important interaction that can be employed to increase drug loading and formulation stability. Here, we test this hypothesis using four different polymer amphiphiles with varying aromatic content and various natural products that also contain different relative amounts of aromatic moieties. While in the case of paclitaxel, having the lowest relative content of aromatic moieties, the drug loading decreases with increasing relative aromatic amount in the polymer, the drug loading of curcumin, having a much higher relative aromatic content, is increased. Interestingly, the loading using schizandrin A, a dibenzo[a,c]cyclooctadiene lignan with intermediate relative aromatic content is not influenced significantly by the aromatic content of the polymers employed. The very high drug loading, long term stability, the ability to form stable highly loaded binary coformulations in different drug combinations, small sized formulations and amorphous structures in all cases, corroborate earlier reports that poly(2-oxazoline) based micelles exhibit an extraordinarily high drug loading and are promising candidates for further biomedical applications. The presented results underline that the interaction between the polymers and the incorporated small molecules are complex and must be investigated in every specific case.<br>


2010 ◽  
Vol 6 (3) ◽  
pp. 277-284 ◽  
Author(s):  
Konstantinos Gardikis ◽  
Konstantinos Dimas ◽  
Aristidis Georgopoulos ◽  
Eleni Kaditi ◽  
Stergios Pispas ◽  
...  

1997 ◽  
Vol 62 (11) ◽  
pp. 1730-1736 ◽  
Author(s):  
Petr Munk ◽  
Zdeněk Tuzar ◽  
Karel Procházka

When two electrolyte solutions are separated and only some of the ions can cross the boundary, the concentrations of these ions are different on both sides of the boundary. This is the well-known Donnan effect. When weak electrolytes are involved, the imbalance includes also hydrogen ions: there is a difference of pH across the boundary and the dissociation of nondiffusible weak electrolytes is suppressed. The effect is very pronounced when the concentration of the weak electrolyte is high and ionic strength is low. The significance of this phenomenon is discussed for polyelectrolyte solutions, and particularly for block copolymer micelles with weak polyelectrolyte shells. The effect is quite dramatic in the latter case.


1993 ◽  
Vol 58 (10) ◽  
pp. 2290-2304 ◽  
Author(s):  
Zuzana Limpouchová ◽  
Karel Procházka

Monte Carlo simulations of chain conformations in a restricted spherical volume at relatively high densities of segments were performed for various numbers of chains, N, and chain lengths (number of segments), L, on a tetrahedral lattice. All chains are randomly end-tethered to the surface of the sphere. A relatively uniform surface density of the tethered ends is guaranteed in our simulations. A simultaneous self-avoiding walk of all chains creates starting conformations for a subsequent equilibration. A modified algorithm similar to that of Siepmann and Frenkel is used for the equilibration of the chain conformations. In this paper, only a geometrical excluded volume effect of segments is considered. Various structural and conformational characteristics, e.g. segment densities gS(r), free end densities gF(r) as functions of the position in the sphere (a distance from the center), distributions of the tethered-to-free end distances, ρTF(rTF), etc. are calculated and their physical meaning is discussed. The model is suitable for studies of chain conformations is swollen cores of multimolecular block copolymer micelles and for interpretation of non-radiative excitation energy migration in polymeric micellar systems.


Sign in / Sign up

Export Citation Format

Share Document