Humidity sensor using a Li-loaded microporous organic polymer assembled by 1,3,5-trihydroxybenzene and terephthalic aldehyde

RSC Advances ◽  
2014 ◽  
Vol 4 (54) ◽  
pp. 28451 ◽  
Author(s):  
Kai Jiang ◽  
Teng Fei ◽  
Tong Zhang
2021 ◽  
Author(s):  
Rizwan Akram ◽  
Muhammad Yaseen ◽  
Zahid Farooq ◽  
Ayesha Rauf ◽  
Karwan Wasman Qadir ◽  
...  

Abstract In the present study, TPPNi has been synthesized by using a microwave-assisted synthesis process. The layer structure of the fabricated humidity sensor (Al/TPPNi/Al) consists of pair of planar 120 nm thin Aluminium (Al) electrodes (deposited by thermal evaporation) and ~ 160 nm facile spin-coated solution-processable organic polymer TPPNi as an active layer between the ~ 40 µm electrode gap which was created through shadow mask process. Physical characterization showed that synthesized TPPNi thin films are very well suitable for their application as ambient sensors based on location and width for Soret band from optical characterization, amorphous structure from XRD, and most importantly the porous surface morphology from field emission scanning electron microscopic study. Electrical properties (capacitance and impedance) of sensors were found to be substantially sensitive not only on relative humidity but also on the frequency of the input bias signal. Our findings demonstrate that the TPPNi has higher humidity sensitivity at lower frequencies. The proposed sensor exhibits multimode (capacitive and conductometric) operation with significantly higher sensitivity ~ 146.17 pF/%RH at 500 Hz and 48.23 kΩ/%RH at 1 kHz. The developed Al/TPPNi/Al surface type humidity sensor's much-improved detecting properties along with reasonable dynamic range and response time suggest that it could be effective for continuous humidity monitoring in multi environmental applications.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3019
Author(s):  
Mushahid Hussain ◽  
Saqib Hasnain ◽  
Nadir Ali Khan ◽  
Shehar Bano ◽  
Fazeelat Zuhra ◽  
...  

In this research article, an organic polymer based polypyrrole (Ppy) composite material has been synthesized and analyzed for the design and fabrication purposes of a fast-responsive, highly sensitive, and an economical resistive-type novel humidity detection sensor. This humidity sensor most suitably serves the purpose for industrial humidity (i.e., values ranging from low to high) detection applications. First, a polypyrrole composite material (a mixture of polypyrrole, polypyrrole-NiO, polypyrrole-CeO2, and polypyrrole-Nb2O5) has been synthesized by chemical oxidative polymerization method, and then is treated at various temperatures, i.e., 100, 150 and 200 °C, respectively. After this treatment, the synthesized samples were then characterized by using FTIR, SEM, and DTA/TGA techniques for analyzing humidity sensing properties. The polypyrrole samples with the best morphological structure and properties were then incorporated on interdigitated electrodes. For the fabrication purposes of this thin film structure, at first a few drops of polyvinyl alcohol (PVA) were placed over interdigitated electrodes (IDE) and then the synthesized polypyrrole composite was uniformly deposited in the form of a thin film over it. The plots show that this is a good resistive-type humidity detection device for the relative humidity range of 30% to 90%. The response and recovery times of this newly fabricated humidity sensor were reported to be the same as 128 s at room temperature. Additionally, the stability and the repeatability response behavior of this Ppy sensor were verified up to five cycles of multiple repetitions. This presents an excellent stability and repeatability performance of the sensor. Furthermore, the capacitances versus humidity response and recovery properties of the designed sensor were studied too. This illustrates an excellent capacitive verses humidity response and shows a linear and an active behavior. Lastly, the experimental result proves that polypyrrole composite thin film shows a reasonable best performance up to a temperature of 100 °C.


2015 ◽  
Vol 2 (1) ◽  
pp. 45
Author(s):  
Mr Wiendartun ◽  
Heni Rusnayati ◽  
Saeful Karim

Hydrophilic properties of organic polymer such as Poly (2-Vinylpyridine- Co-Styrene) have been found to have a correlation with other physical properties especially the electric resistivity. In this work, we have studied one of the physical properties of a polymer material, Poly (2-Vinylpyridine- Co-Styrene), that is the electric resistivity. It was studied on the basis of its relation with the concentration, temperature, humidity and the distance between their electrodes. The sample fabricated consists of two types of consentration: 0.03 gr/ml and 0.05 gr/ml with the distance between the two electrodes are 0.40 mm and 0.80 mm respectively. Towards these samples, we investigated the resistance coefficient for every 2% change in humidity for both drying and watering processes. From the experiment we obtain the following results: 1) There is hysteresis during the watering and drying processes indicating the continuity of resistance of this material, 2) Sample with smaller distance of electrodes performs better than that of the longer ones, 3) Sample fabricated from solution with higher concentration performs better than that of the lower ones, 4) Room temperature plays a significant role on the performance of the polymer material between the associated electrodes. These results could be used as a stepping-stone toward the more advance research leading the determination of film stability, resistancy upon temperature variation etc, so that this polymer material could be further developed into the humidity sensor device material.Key words: Hydrophilic, electric resistance, humidity sensor and polymer.


Author(s):  
Mukesh Mahajan ◽  
Astha Dubey ◽  
Samruddhi Desai ◽  
Kaveri Netawate

This paper reviews basically about Bluetooth based home automation system. It is controlled by PIC microcontroller. Home automation can be defined as the ability to perform tasks automatically and monitor or change status remotely. These include tasks such as turning off lights in the room, locking doors via smartphone, automate air condition systems and appliances which help in the kitchen. Now a days several wireless devices are available such as Bluetooth, Zigbee and GSM. Since Bluetooth is low in cost than the other two and hence is used more. In this paper we have described the methods of automating different home appliances using Bluetooth and pic microcontroller. Different sensors are involved in this system to advance and make it smarter. Sensors such as temperature sensor, liquid sensors, humidity sensor etc. can be used.


2003 ◽  
Vol 771 ◽  
Author(s):  
Michael C. Hamilton ◽  
Sandrine Martin ◽  
Jerzy Kanicki

AbstractWe have investigated the effects of white-light illumination on the electrical performance of organic polymer thin-film transistors (OP-TFTs). The OFF-state drain current is significantly increased, while the drain current in the strong accumulation regime is relatively unaffected. At the same time, the threshold voltage is decreased and the subthreshold slope is increased, while the field-effect mobility of the charge carriers is not affected. The observed effects are explained in terms of the photogeneration of free charge carriers in the channel region due to the absorbed photons.


Author(s):  
Сергей Борисович Казаков ◽  
Дмитрий Михайлович Шишов ◽  
Антон Игоревич Ларин ◽  
Александр Петрович Николаев ◽  
Аза Валерьевна Писарева

В статье представлен обзор существующих технических решений в сфере мониторинга и предотвращения апноэ во сне. Произведён анализ существующих аппаратов для предотвращения апноэ, который показал, что на рынке присутствует большое количество импортных моделей, однако они имеют довольно высокую цену. Разработанный нами Российский аналог проектируемого аппарата, при схожих характеристиках, будет иметь более привлекательную цену, чем у импортных приборов. Интегрирование датчика влажности в персональную маску пациента даёт возможность отслеживать остановки дыхания пациента во время сна, и тем самым включать процесс принудительной подачи дыхательной смеси именно в тот момент, когда она необходима для устранения патологии. Целью научной работы является разработка конструкции прибора и создание алгоритма программы для управления аппарата искусственной вентиляции лёгких для предотвращения апноэ во сне. Показана разработка структуры устройства аппарата. Подобран компрессор и датчик влажности с обоснованными характеристиками для создания аппарата, а также основные элементы. Разработана конструкция корпуса аппарата и разработана компоновка. Выполнено технико-экономическое обоснование разработки аппаратно-программного комплекса для предотвращения апноэ во сне. Показано, что себестоимость готового изделия достаточно конкурентна The article presents an overview of existing technical solutions in the field of monitoring and prevention of sleep apnea. An analysis of existing devices for preventing apnea was made, which showed that there are a large number of imported models on the market, but they have a fairly high price. The Russian analog of the designed device developed by us, with similar characteristics, will have a more attractive price than that of imported devices. The integration of the humidity sensor into the patient's personal mask makes it possible to monitor the patient's breathing stops during sleep, and thus enable the process of forced delivery of the respiratory mixture at the exact moment when it is necessary to eliminate the pathology. The purpose of the research is to develop the device design and create a program algorithm for controlling the artificial lung ventilation device to prevent sleep apnea. The development of the device structure is shown. The compressor and humidity sensor with reasonable characteristics for creating the device, as well as the main elements are selected. The design of the device body and its layout were developed. A feasibility study for the development of a hardware and software system for preventing sleep apnea has been completed. It is shown that the cost of the finished product is quite competitive


2017 ◽  
Vol 35 (7) ◽  
pp. 688
Author(s):  
Hongwei WANG ◽  
Zhongshan LIU ◽  
Xiaojun PENG ◽  
Junjie OU ◽  
Mingliang YE

1979 ◽  
Vol 44 (8) ◽  
pp. 2330-2337 ◽  
Author(s):  
Jindřiška Maternová ◽  
Anastas A. Andreev ◽  
Dimitrii M. Shopov ◽  
Karel Setínek

It was found spectroscopically that cobalt(II) acetate dissolved in glacial acetic acid forms the octahedral complex [Co(OAc)2(HOAc)4] which in the presence of bromide ions gives the octahedral [Co(OAc)Br(HOAc)4] and tetrahedral bromo(acetate)cobalt(II) complexes with the higher number of Br- ions. When attached to an organic polymer cobalt(II) ions are bonded in the form of octahedral [Co(H2O)6]2+ cations which form with acetic acid similar complexes as in homogeneous phase and are able to coordinate one bromide ion. Drying the copolymer possessing octahedral hexaaquocobalt(II) cations leads to tetrahedral aquocomplexes which are solvated by gaseous acetic acid and converted into the acetate complexes with the liquid acid. The latter contain the acid in the inner coordination sphere and have tetrahedral symmetry.


Sign in / Sign up

Export Citation Format

Share Document