Molecular insights into the damping mechanism of poly(vinyl acetate)/hindered phenol hybrids by a combination of experiment and molecular dynamics simulation

RSC Advances ◽  
2015 ◽  
Vol 5 (6) ◽  
pp. 4200-4209 ◽  
Author(s):  
Kangming Xu ◽  
Fengshun Zhang ◽  
Xianlong Zhang ◽  
Jiwei Guo ◽  
Hong Wu ◽  
...  

By combining experiment and MD simulation, the relationship between hydrogen bond evolution and damping property variation of PVAc was revealed.

2014 ◽  
Vol 2 (22) ◽  
pp. 8545-8556 ◽  
Author(s):  
Kangming Xu ◽  
Fengshun Zhang ◽  
Xianlong Zhang ◽  
Qiaoman Hu ◽  
Hong Wu ◽  
...  

By combining experiments and MD simulation, the relationship between hydrogen bond evolution and damping property variation of TPU was revealed.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Fancui Meng

The binding mode of sorafenib with VEGFR2 was studied using molecular docking and molecular dynamics method. The docking results show that sorafenib forms hydrogen bonds with Asp1046, Cys919, and Glu885 of VEGFR2 receptor. Molecular dynamics simulation suggests that the hydrogen bond involving Asp1046 is the most stable one, and it is almost preserved during all the MD simulation time. The hydrogen bond formed with Cys919 occurs frequently after 6 ns, while the bifurcated hydrogen bonds involving Glu885 occurs occasionally. Meantime, molecular dynamics simulations of VEGFR2 with 11 other urea-substituted aryloxy compounds have also been performed, and the results indicate that a potent VEGFR2 inhibitor should have lower interaction energy with VEGFR2 and create at least 2 hydrogen bonds with VEGFR2.


RSC Advances ◽  
2016 ◽  
Vol 6 (89) ◽  
pp. 85994-86005 ◽  
Author(s):  
Xiuying Zhao ◽  
Geng Zhang ◽  
Feng Lu ◽  
Liqun Zhang ◽  
Sizhu Wu

The damping properties of AO-70/NBR composites get a noteworthy increase with the introduction of AO-70—max tan δincreased by 66.9%.


CrystEngComm ◽  
2019 ◽  
Vol 21 (48) ◽  
pp. 7507-7518 ◽  
Author(s):  
Soroush Ahmadi ◽  
Yuanyi Wu ◽  
Sohrab Rohani

Molecular dynamics (MD) simulation is used to investigate the mechanism of crystal nucleation of potassium chloride (KCl) in a supersaturated aqueous solution at 293 K and 1 atm.


2019 ◽  
Vol 20 (4) ◽  
pp. 819 ◽  
Author(s):  
Md Rehman ◽  
Mohamed AlAjmi ◽  
Afzal Hussain ◽  
Gulam Rather ◽  
Meraj Khan

The bacteria expressing New Delhi Metallo-β-lactamase-1 (NDM-1) can hydrolyze all β-lactam antibiotics including carbapenems, causing multi-drug resistance. The worldwide emergence and dissemination of gene blaNDM-1 (produces NDM-1) in hospital and community settings, rising problems for public health. Indeed, there is an urgent need for NDM-1 inhibitors to manage antibiotic resistance. Here, we have identified novel non-β-lactam ring-containing inhibitors of NDM-1 by applying a high-throughput virtual screening of lead-like subset of ZINC database. The screened compounds were followed for the molecular docking, the molecular dynamics simulation, and then enzyme kinetics assessment. The adopted screening procedure funnels out five novel inhibitors of NDM-1 including ZINC10936382, ZINC30479078, ZINC41493045, ZINC7424911, and ZINC84525623. The molecular mechanics-generalized born surface area and molecular dynamics (MD) simulation showed that ZINC84525623 formed the most stable complex with NDM-1. Furthermore, analyses of the binding pose after MD simulation revealed that ZINC84525623 formed two hydrogen bonds (electrostatic and hydrophobic interaction) with key amino acid residues of the NDM-1 active site. The docking binding free energy and docking binding constant for the ZINC84525623 and NDM-1 interaction were estimated to be −11.234 kcal/mol, and 1.74 × 108 M−1 respectively. Steady-state enzyme kinetics in the presence of ZINC84525623 show the decreased catalytic efficiency (i.e., kcat/Km) of NDM-1 on various antibiotics. The findings of this study would be helpful in identifying novel inhibitors against other β-lactamases from a pool of large databases. Furthermore, the identified inhibitor (ZINC84525623) could be developed as efficient drug candidates.


2011 ◽  
Vol 697-698 ◽  
pp. 192-197 ◽  
Author(s):  
Ting Ting Zhou ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Bin Zou ◽  
Hong Tao Zhu

The interfacial energy and diffusion phenomenon of the Al2O3(012)-SiC (011) interface model are studied based on molecular dynamics. The interfacial energy increases firstly until reaches its maximum 0.459J/m2at the temperature of 1500K and then decreases. The relationship of diffusion coefficients for each kind of atoms is C>Si>O>Al. Diffusion coefficients of atoms increase at first and then decrease as the temperature goes up. This indicates the diffusion mechanism has been changed during the temperature rising process.


2017 ◽  
Vol 748 ◽  
pp. 29-34 ◽  
Author(s):  
Jing Zhu ◽  
Xiu Ying Zhao ◽  
Meng Song ◽  
Yue Han ◽  
Li Liu ◽  
...  

This work was try to study the number and types of hydrogen bonds (H-bonds) formed in hindered phenol AO-70/nitrile butadiene rubber (NBR) composites and their contributions to the damping properties by molecular dynamic (MD) simulation and experimental methods. MD simulation results showed that there were four types of H-bonds, namely, type A (AO-70) –OH...NC– (NBR) H-bonds in AO-70/NBR composites, type B (AO-70) –OH...O=C– (AO-70) H-bonds, type C (AO-70) –OH...OH–(AO-70) and D (AO-70) –OH...O–C– (AO-70) H-bonds, what's more, type A and type B H-Bonds formed more easily than others. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of H-bonds. Meanwhile, the AO-70/NBR composites with AO-70 content of 109 phr had the largest number of H-bonds, smallest fractional free volume (FFV) and resulting in the optimistic damping performance of the composites.


Sign in / Sign up

Export Citation Format

Share Document