Synthesis, characterization and drug release studies of poly(2-hydroxyethyl methacrylate)/KIT-5 nanocomposite as an innovative organic–inorganic hybrid carrier system

RSC Advances ◽  
2015 ◽  
Vol 5 (16) ◽  
pp. 12463-12471 ◽  
Author(s):  
Roozbeh Javad Kalbasi ◽  
Ali Zirakbash

PHEMA/KIT-5 with various pore sizes was prepared. Efficient encapsulation of drug molecules inside the pores of the hybrid material and controlled release of them in an aqueous medium, suggest the great promise of the composite as a carrier system.

Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 110
Author(s):  
Muhammad Suhail ◽  
Chih-Wun Fang ◽  
Arshad Khan ◽  
Muhammad Usman Minhas ◽  
Pao-Chu Wu

The purpose of the current investigation was to develop chondroitin sulfate/carbopol-co-poly(acrylic acid) (CS/CBP-co-PAA) hydrogels for controlled delivery of diclofenac sodium (DS). Different concentrations of polymers chondroitin sulfate (CS), carbopol 934 (CBP), and monomer acrylic acid (AA) were cross-linked by ethylene glycol dimethylacrylate (EGDMA) in the presence of ammonium peroxodisulfate (APS) (initiator). The fabricated hydrogels were characterized for further experiments. Characterizations such as Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC), Powder X-ray diffractometry (PXRD), and Fourier transform infrared spectroscopy (FTIR) were conducted to understand the surface morphology, thermodynamic stability, crystallinity of the drug, ingredients, and developed hydrogels. The swelling and drug release studies were conducted at two different pH mediums (pH 1.2 and 7.4), and pH-dependent swelling and drug release was shown due to the presence of functional groups of both polymers and monomers; hence, greater swelling and drug release was observed at the higher pH (pH 7.4). The percent drug release of the developed system and commercially available product cataflam was compared and high controlled release of the drug from the developed system was observed at both low and high pH. The mechanism of drug release from the hydrogels followed Korsmeyer–Peppas model. Conclusively, the current research work demonstrated that the prepared hydrogel could be considered as a suitable candidate for controlled delivery of diclofenac sodium.


2010 ◽  
Vol 8 (56) ◽  
pp. 451-456 ◽  
Author(s):  
Ming-Wei Chang ◽  
Eleanor Stride ◽  
Mohan Edirisinghe

Drug-delivery systems with a unique capability to respond to a given stimulus can improve therapeutic efficacy. However, development of such systems is currently heavily reliant on responsive polymeric materials and pursuing this singular strategy limits the potential for clinical translation. In this report, with a model system used for drug-release studies, we demonstrate a new strategy: how a temperature-responsive non-toxic, volatile liquid can be encapsulated and stored under ambient conditions and subsequently programmed for controlled drug release without relying on a smart polymer. When the stimulus temperature is reached, controlled encapsulation of different amounts of dye in the capsules is achieved and facilitates subsequent sustained release. With different ratios of the liquid (perfluorohexane): dye in the capsules, enhanced controlled release with real-time response is provided. Hence, our findings offer great potential for drug-delivery applications and provide new generic insights into the development of stimuli drug-release systems.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Avinash Sharma ◽  
Jyoti Sharma ◽  
Rupinder Kaur ◽  
Vinay Saini

The present investigation deals with the optimization, formulation, and characterization of oralin situgel of spiramycin. Sodium alginate and hydroxypropyl methylcellulose were used as cross-linking and viscosifying agents, respectively. Sodium bicarbonate was used as a floating agent. In preformulation studies, the melting point, pH, and partition coefficient were found to be 133°C, 9.5, and 0.193, respectively. The drug had retention time at around 2.65 minutes in high performance liquid chromatography (HPLC). During compatibility studies of drug with all polymers, we observed that there were no changes in the FTIR spectra of a mixture of drug and polymers. All the formulations showed good pourability. Floating time and total floating time were~30 sec and >12 hours, respectively. Duringin vitrodrug release studies, the drug was released from the formulation around 80–100% for 12–16 hrs. In TEM analysis, we found that the drug molecules were well entrapped in the polymer and the drug was released slowly for up to 12 hrs. In these studies, we found that the concentration of sodium alginate and HPMC had significant influence on floating lag time, gelling capacity, and cumulative percentage drug release. During antimicrobial studies, we found that the formulation containing spiramycin showed good zone of inhibition against different microbial strains (Staphylococcus aureusandEscherichia coli).


2005 ◽  
Vol 16 (2) ◽  
pp. 95-100 ◽  
Author(s):  
Tai-Li Tsou ◽  
Shang-Tao Tang ◽  
Yu-Chuan Huang ◽  
Jing-Ran Wu ◽  
Jenn-Jong Young ◽  
...  

1998 ◽  
Vol 18 (1-2) ◽  
pp. 281-285 ◽  
Author(s):  
I Caraballo ◽  
J Alvarez-Fuentes ◽  
L.M Melgoza ◽  
M Millán ◽  
M.A Holgado ◽  
...  

2015 ◽  
Vol 18 (8) ◽  
pp. 705-713 ◽  
Author(s):  
K. Sudhakar ◽  
K. Madhusudana Rao ◽  
M.C.S. Subha ◽  
K. Chowdoji Rao ◽  
E. Rotimi Sadiku

2007 ◽  
Vol 555 ◽  
pp. 441-446 ◽  
Author(s):  
M.M. Mićić ◽  
S.Lj. Tomić ◽  
J.M. Filipović ◽  
E. Suljovrujić

Controlled release studies of drugs (theophylline (TH), fenethylline hydrochloride (FE) and gentamicin sulphate (GS)) from pH sensitive poly(2-hydroxyethyl methacrylate/itaconic acid) (P(HEMA/IA)) hydrogels obtained by gamma irradiation were carried out to investigate transport phenomena. Drug behavior and release profiles were analyzed using the restriction coefficient combining the influence of network structure and the size of the drug on release and transport properties. The results demonstrated that the ratio of drug radius to polymer pore size and drugpolymer interactions were dominant factors in hindering the diffusion process. The diffusivity of a drug through the hydrogels decreases with the size of the drug molecules and with the decrease in gel pore size. The diffusion equations for used drugs explain drug transport in hydrogels.


2021 ◽  
Vol 22 (12) ◽  
pp. 6446
Author(s):  
Sebastián Salazar ◽  
Nicolás Yutronic ◽  
Marcelo J. Kogan ◽  
Paul Jara

This article describes the synthesis and characterization of β-cyclodextrin-based nano-sponges (NS) inclusion compounds (IC) with the anti-tumor drugs melphalan (MPH) and cytoxan (CYT), and the addition of gold nanoparticles (AuNPs) onto both systems, for the potential release of the drugs by means of laser irradiation. The NS-MPH and NS-CYT inclusion compounds were characterized using scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), UV–Vis, and proton nuclear magnetic resonance (1H-NMR). Thus, the inclusion of MPH and CYT inside the cavities of NSs was confirmed. The association of AuNPs with the ICs was confirmed by SEM, EDS, TEM, and UV–Vis. Drug release studies using NSs synthesized with different molar ratios of β-cyclodextrin and diphenylcarbonate (1:4 and 1:8) demonstrated that the ability of NSs to entrap and release the drug molecules depends on the crosslinking between the cyclodextrin monomers. Finally, irradiation assays using a continuous laser of 532 nm showed that photothermal drug release of both MPH and CYT from the cavities of NSs via plasmonic heating of AuNPs is possible.


Author(s):  
Neeraj Agrawal ◽  
M.J. Chandrasekar ◽  
U.V. Sara ◽  
Rohini A.

A macromolecular prodrug of didanosine (ddI) for oral administration was synthesized and evaluated for in-vitro drug release profile. Didanosine was first coupled to 2-hydroxy ethyl methacrylate (HEMA) through a succinic spacer to form HEMA-Suc-ddI monomeric conjugate which was subsequently polymerized to yield Poly(HEMA-Suc-ddI) conjugate. The structures of the synthesized compounds were characterized by FT-IR, Mass and 1H-NMR spectroscopy. The prodrug was subjected for in-vitro drug release studies in buffers of pH 1.2 and 7.4 mimicking the upper and lower GIT. The results showed that the drug release from the polymeric backbone takes place in a sustained manner over a period of 24 h and the amount of drug released was comparatively higher at pH 7.4 indicating that the drug release takes place predominantly at the alkaline environment of the lower GIT rather than at the acidic environment of the upper GIT. This pH dependent sustained drug release behavior of the prodrug may be capable of reducing the dose limiting toxicities by maintaining the plasma drug level within the therapeutic range and increasing t1/2 of ddI. Moreover, the bioavailability of the drug should be improved as the prodrug releases ddI predominantly in the alkaline environment which will reduce the degradation of ddI in the stomach acid.


Sign in / Sign up

Export Citation Format

Share Document