scholarly journals Cyclodextrin Nanosponges Inclusion Compounds Associated with Gold Nanoparticles for Potential Application in the Photothermal Release of Melphalan and Cytoxan

2021 ◽  
Vol 22 (12) ◽  
pp. 6446
Author(s):  
Sebastián Salazar ◽  
Nicolás Yutronic ◽  
Marcelo J. Kogan ◽  
Paul Jara

This article describes the synthesis and characterization of β-cyclodextrin-based nano-sponges (NS) inclusion compounds (IC) with the anti-tumor drugs melphalan (MPH) and cytoxan (CYT), and the addition of gold nanoparticles (AuNPs) onto both systems, for the potential release of the drugs by means of laser irradiation. The NS-MPH and NS-CYT inclusion compounds were characterized using scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), UV–Vis, and proton nuclear magnetic resonance (1H-NMR). Thus, the inclusion of MPH and CYT inside the cavities of NSs was confirmed. The association of AuNPs with the ICs was confirmed by SEM, EDS, TEM, and UV–Vis. Drug release studies using NSs synthesized with different molar ratios of β-cyclodextrin and diphenylcarbonate (1:4 and 1:8) demonstrated that the ability of NSs to entrap and release the drug molecules depends on the crosslinking between the cyclodextrin monomers. Finally, irradiation assays using a continuous laser of 532 nm showed that photothermal drug release of both MPH and CYT from the cavities of NSs via plasmonic heating of AuNPs is possible.

RSC Advances ◽  
2015 ◽  
Vol 5 (16) ◽  
pp. 12463-12471 ◽  
Author(s):  
Roozbeh Javad Kalbasi ◽  
Ali Zirakbash

PHEMA/KIT-5 with various pore sizes was prepared. Efficient encapsulation of drug molecules inside the pores of the hybrid material and controlled release of them in an aqueous medium, suggest the great promise of the composite as a carrier system.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Avinash Sharma ◽  
Jyoti Sharma ◽  
Rupinder Kaur ◽  
Vinay Saini

The present investigation deals with the optimization, formulation, and characterization of oralin situgel of spiramycin. Sodium alginate and hydroxypropyl methylcellulose were used as cross-linking and viscosifying agents, respectively. Sodium bicarbonate was used as a floating agent. In preformulation studies, the melting point, pH, and partition coefficient were found to be 133°C, 9.5, and 0.193, respectively. The drug had retention time at around 2.65 minutes in high performance liquid chromatography (HPLC). During compatibility studies of drug with all polymers, we observed that there were no changes in the FTIR spectra of a mixture of drug and polymers. All the formulations showed good pourability. Floating time and total floating time were~30 sec and >12 hours, respectively. Duringin vitrodrug release studies, the drug was released from the formulation around 80–100% for 12–16 hrs. In TEM analysis, we found that the drug molecules were well entrapped in the polymer and the drug was released slowly for up to 12 hrs. In these studies, we found that the concentration of sodium alginate and HPMC had significant influence on floating lag time, gelling capacity, and cumulative percentage drug release. During antimicrobial studies, we found that the formulation containing spiramycin showed good zone of inhibition against different microbial strains (Staphylococcus aureusandEscherichia coli).


Author(s):  
Alessandro Grattoni ◽  
Xuewu Liu ◽  
Zongxing Wang ◽  
Jaskaran Gill ◽  
Arturas Ziemys ◽  
...  

Our research group was the first one to microfabricate and demonstrate nano-channels in silicon membranes (1, 2). We employed nano-channeled chips to provide immuno-isolation for cell transplantation towards the treatment of diabetes (3), for biomolecular separation (4), and for the controlled passive and active release of drug molecules from implanted capsules (5). We showed that the constraints placed upon molecular agitation in nano-channels affected their concentration-driven transport kinetics (6, 7). A zero-order passive release of biological molecules was achieved, by the rational tailoring of nano-channels dimensions. This achievement allowed releasing of a constant amount of drugs over a long period of time. However, the development and optimization of many drug therapies require long-term drug delivery with controlled but variable dosage using miniaturized systems (8). Moreover, application such as drug release from implanted devices requires tight operational control, of regulatory agency caliber. We have engaged in the development and characterization of elecroosmotic nano-channels membranes, and present our results in this communication. These include the influence of the drug release rate on nanochannel size, membrane configuration, and applied voltage.


Author(s):  
Mona Semalty ◽  
Shikha Yadav ◽  
Ajay Semalty

As Ofloxacin is preferably absorbed from the upper part of the gastrointestinal tract and is readily soluble in the acidic environment of the stomach, the floating microspheres of ofloxacin were formulated to develop gastroretentive formulation. These floating microspheres release the drug in the stomach and upper gastrointestinal tract and thereby improve the bioavailability. In the present study, six formulations of ofloxacin hydrochloride were prepared as floating microspheres by solvent diffusion technique using polymers such as ethyl cellulose, polyvinyl pyrrolidone K-90 and poly vinyl alcohol in different ratios. The prepared microspheres were evaluated for different physicochemical tests such as particle size, percent drug entrapment, drug content uniformity, SEM, buoyancy test, and in vitro drug release studies. The results of all the physicochemical tests of all formulations were found to be satisfactory. In vitro floatability studies revealed that most of the microspheres (52.5% to 95.5%) were floatable. The in vitro drug release was found to be in the range of 39.64 to 93.64 % at the end of 6 hours. It is concluded that these floating microspheres can be selected for the development of gastroretentive drug delivery system of ofloxacin hydrochloride for potential therapeutic uses.


2021 ◽  
Author(s):  
Bahar Yilmaz

Abstract In this work, biocompatible and protective pure HEMA hydrogel structures and drug loaded HEMA hydrogel have been successfully synthesized. The hydrogel was prepared using HEMA, MBA, APS and TEMED. The structural and morphological characterization of pure hydrogel and drug-loaded hydrogels were characterized using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM), respectively. The pH affinity, morphology, structure, drug release, swelling and cytotoxic effect of the resulting materials were studied in detail. Drug releases of drug-loaded hydrogel structures were measured at certain time intervals and recorded as cumulatively (%). In addition, cytotoxicity tests were performed by Alamar blue method on MCF-7, MIA PaCa-2 and HEK 293 cell lines of released drug molecules. This HEMA hydrogel was suggested to be materials of biological attention and of large pharmacological potential as support material in drug release of nifedipine, furosemide, niclosamide and similar drug molecules.


2017 ◽  
Vol 4 (S) ◽  
pp. 124
Author(s):  
Minh Tri Luu ◽  
Shelley Wickham ◽  
Ali Abbas

The cutting-edge technology of constructing nanoscale objects using DNA origami has opened new directions for drug delivery in cancer chemotherapy research [1, 2]. This project aims to develop a novel DNA origami nanobot for drug delivery, with high selectivity and specificity for chemotherapy. It is important to be able to control the rate of drug release to maintain the concentration of chemotherapeutic agents at the desirable set-point [3]. This control can be achieved through various activation methods, similar to those used in liposome drug delivery systems, e.g. magnetism, radiation, ultrasound, heating etc. [4]. These stimuli can deliver specific types of energy (e.g. thermal), which can then activate a pre-designed nanobot- topology variation. For example, thermal energy can cause local DNA strands to melt and partially distort some local regions of the DNA topology, releasing drug molecules. One mechanism to activate the drug release is via radio frequency (RF) electromagnetic wave induced heating of gold nanoparticles [6]. A prototype nanobot will be developed and tested for heat-triggered nanobot switching between open and closed configurations. It is hypothesized that upon RF heating, the gold nanoparticles will concentrate the heat and cause the local DNA strands to melt, leading to the open configuration, without melting the rest of the nanobot structure. Heating time and power will be tuned to regulate the drug release rate. This work will develop an effective process control strategy for enhanced performance of nanoscale drug delivery systems.


Author(s):  
Shubhrajit Mantry ◽  
Anna Balaji

Objective: The objective of this research work to design nasal microspheres of ropinirole hydrochloride (HCL) using different mucoadhesive polymers by adopting the suitable technique. To study the influence of formulation and process variables on microsphere formation and release characteristics. To perform the physicochemical characterization of the prepared microspheres. To carry out in vitro drug release studies and to explore the release behavior using various kinetic models.Methods: Experiments were performed with ropinirole HCL as a drug, chitosan, guar gum, carbopol 974P as a polymer. Span 80 and Tween 80 used light liquid paraffin, concentrated hydrochloric acid as solvent.Result: The in vitro drug release studies were conducted for all the formulations, that is, F1-F21 in 250 ml phosphate buffer pH 6.6 for 12 hrs. Among them, F15 showed 82.7±0.23% drug release and F21 showed 81.2% in 12 hrs in a sustained manner.Conclusion: Microspheres were formulated by emulsion solvent evaporation technique using different polymers. Apart from preventing nasal irritation, the microsphere possesses two major advantages over plain solutions, one is a high solubilization capacity for ropinirole HCL that exceeds their aqueous solubility and thus allows a reduction in the application volume. The results of this work indicate that intranasal microsphere of ropinirole may be beneficial for the treatment of Parkinson’s disease.


Sign in / Sign up

Export Citation Format

Share Document