Ionothermal confined self-organization for hierarchical porous magnesium borate superstructures as highly efficient adsorbents for dye removal

2014 ◽  
Vol 2 (45) ◽  
pp. 19167-19179 ◽  
Author(s):  
Zhaoqiang Zhang ◽  
Wancheng Zhu ◽  
Ruguo Wang ◽  
Linlin Zhang ◽  
Lin Zhu ◽  
...  

Uniform hierarchical porous MgBO2(OH)/ Mg2B2O5 superstructures were obtained for the first time via a facile ionothermal route, both of which exhibited excellent removal efficiency for Congo red with good recyclability and reusability.

RSC Advances ◽  
2019 ◽  
Vol 9 (35) ◽  
pp. 20009-20018 ◽  
Author(s):  
Rui-Feng Guo ◽  
Yan-Qing Ma ◽  
Zhi-Hong Liu

Three 3D hierarchical porous 7MgO·2B2O3·7H2O and 3MgO·B2O3 microspheres assembled by nanosheets have been prepared by a serial preparation strategy. They exhibited excellent selective adsorption performance for Congo red with high adsorption capacities.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 384
Author(s):  
Ahmed Labena ◽  
Ahmed E. Abdelhamid ◽  
Abeer S. Amin ◽  
Shimaa Husien ◽  
Liqaa Hamid ◽  
...  

Biosorption is a bioremediation approach for the removal of harmful dyes from industrial effluents using biological materials. This study investigated Methylene blue (M. blue) and Congo red (C. red) biosorption from model aqueous solutions by two marine macro-algae, Ulva fasciata and Sargassum dentifolium, incorporated within acrylic fiber waste to form composite membranes, Acrylic fiber-U. fasciata (AF-U) and Acrylic fiber-S. dentifolium (AF-S), respectively. The adsorption process was designed to more easily achieve the 3R process, i.e., removal, recovery, and reuse. The process of optimization was implemented through one factor at a time (OFAT) experiments, followed by a factorial design experiment to achieve the highest dye removal efficiency. Furthermore, isotherm and kinetics studies were undertaken to determine the reaction nature. FT-IR and SEM analyses were performed to investigate the properties of the membrane. The AF-U membrane showed a significant dye removal efficiency, of 88.9% for 100 ppm M. blue conc. and 79.6% for 50 ppm C. red conc. after 240 min sorption time. AF-S recorded a sorption capacity of 82.1% for 100 ppm M. blue conc. after 30 min sorption time and 85% for 100 ppm C. red conc. after 240 min contact time. The membranes were successfully applied in the 3Rs process, in which it was found that the membranes could be used for five cycles of the removal process with stable efficiency.


2017 ◽  
Vol 490 ◽  
pp. 242-251 ◽  
Author(s):  
Chunsheng Lei ◽  
Meng Pi ◽  
Chuanjia Jiang ◽  
Bei Cheng ◽  
Jiaguo Yu

2020 ◽  
Vol 8 (3) ◽  
pp. 103809 ◽  
Author(s):  
Ghizlane Derouich ◽  
Saad Alami Younssi ◽  
Jamal Bennazha ◽  
Jason A. Cody ◽  
Mohamed Ouammou ◽  
...  

2018 ◽  
pp. 1060-1068
Author(s):  
Galina A. Dvoenosova ◽  

The article assesses synergetic theory of document as a new development in document science. In information society the social role of document grows, as information involves all members of society in the process of documentation. The transformation of document under the influence of modern information technologies increases its interest to representatives of different sciences. Interdisciplinary nature of document as an object of research leads to an ambiguous interpretation of its nature and social role. The article expresses and contends the author's views on this issue. In her opinion, social role of document is incidental to its being a main social tool regulating the life of civilized society. Thus, the study aims to create a scientific theory of document, explaining its nature and social role as a tool of social (goal-oriented) action and social self-organization. Substantiation of this idea is based on application of synergetics (i.e., universal theory of self-organization) to scientific study of document. In the synergetic paradigm, social and historical development is seen as the change of phases of chaos and order, and document is considered a main tool that regulates social relations. Unlike other theories of document, synergetic theory studies document not as a carrier and means of information transfer, but as a unique social phenomenon and universal social tool. For the first time, the study of document steps out of traditional frameworks of office, archive, and library. The document is placed on the scales with society as a global social system with its functional subsystems of politics, economy, culture, and personality. For the first time, the methods of social sciences and modern sociological theories are applied to scientific study of document. This methodology provided a basis for theoretical vindication of nature and social role of document as a tool of social (goal-oriented) action and social self-organization. The study frames a synergetic theory of document with methodological foundations and basic concepts, synergetic model of document, laws of development and effectiveness of document in the social continuum. At the present stage of development of science, it can be considered the highest form of theoretical knowledge of document and its scientific explanatory theory.


2011 ◽  
Vol 340 ◽  
pp. 236-240
Author(s):  
Jian Feng Ma ◽  
Jian Ming Yu ◽  
Bing Ying Cui ◽  
Ding Long Li ◽  
Juan Dai

Inorganic-organic-bentonite was synthesized by modification of bentonite by Hydroxy-iron and surfactant, which could be applied in dye removal by adsorption and catalysis. The removal of acid dye Orange II was studied at various factors such as time and pH of solution. The results showed that the inorganic-organic-bentonite could efficiently remove the dye with efficiency of 96.22%. The maximum adsorption capacity is 76 mg/g. The pH of solution has significant effect on both adsorption and catalysis. When pH was 4, the maximum removal efficiency of adsorption and catalysis were 97.57% and 87.23%, respectively. After degradation, the secondary pollution was diminished and the bentonite could be reused.


Author(s):  
Jong-Chan Kim ◽  
Jungkyu Kim ◽  
Jinseok Park ◽  
Jung-Kwon Oh ◽  
In-Gyu Choi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document