scholarly journals Tri-peptide cationic lipids for gene delivery

2015 ◽  
Vol 3 (1) ◽  
pp. 119-126 ◽  
Author(s):  
Yinan Zhao ◽  
Shubiao Zhang ◽  
Yuan Zhang ◽  
Shaohui Cui ◽  
Huiying Chen ◽  
...  

A novel tri-peptide cationic lipid can efficiently transfer DNA and siRNA into tumor cells and tumors of mice with little in vitro and in vivo toxicity.

2006 ◽  
Vol 26 (4) ◽  
pp. 301-324 ◽  
Author(s):  
N. Madhusudhana Rao ◽  
Vijaya Gopal

Cationic lipids are conceptually and methodologically simple tools to deliver nucleic acids into the cells. Strategies based on cationic lipids are viable alternatives to viral vectors and are becoming increasingly popular owing to their minimal toxicity. The first-generation cationic lipids were built around the quaternary nitrogen primarily for binding and condensing DNA. A large number of lipids with variations in the hydrophobic and hydrophilic region were generated with excellent transfection efficiencies in vitro. These cationic lipids had reduced efficiencies when tested for gene delivery in vivo. Efforts in the last decade delineated the cell biological basis of the cationic lipid gene delivery to a significant detail. The application of techniques such as small angle X-ray spectroscopy (SAXS) and fluorescence microscopy, helped in linking the physical properties of lipid:DNA complex (lipoplex) with its intracellular fate. This biological knowledge has been incorporated in the design of the second-generation cationic lipids. Lipid-peptide conjugates (peptoids) are effective strategies to overcome the various cellular barriers along with the lipoplex formulations methodologies. In this context, cationic lipid-mediated gene delivery is considerably benefited by the methodologies of liposome-mediated drug delivery. Lipid mediated gene delivery has an intrinsic advantage of being a biomimetic platform on which considerable variations could be built to develop efficient in vivo gene delivery protocols.


Author(s):  
Jing Wu ◽  
Shuhe Wang ◽  
Xiang Li ◽  
Qi Zhang ◽  
Jie Yang ◽  
...  

BC15-31 is a DNA aptamer that targets heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), which plays a crucial role in the process of pre-RNA maturation and is also essential for the rapid proliferation of tumor cells. In this research, we modified BC15-31 with a phosphorothioate (PS) backbone, LNA, and 2-O-MOE to enhance its stability and target affinity. In addition, a neutral cytidinyl lipid (DNCA) and a cationic lipid (CLD) were mixed to encapsulate modified aptamers with the aim of improving their cell permeability with low toxicity. Under the DNCA/CLD package, aptamers are mainly distributed in the nucleus. A modified sequence WW-24 showed an excellent selective anti-melanoma (A375 cells, ∼25 nM, 80%) activity, targeted to both hnRNP A1 and hnRNP A2/B1 found by the BLI experiment, and induced more early and late apoptosis in vitro, which also showed stronger antitumor effect and longer accumulation time in vivo. These results provide a new strategy for further clinical applications.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 729
Author(s):  
Natalia Sánchez-Arribas ◽  
María Martínez-Negro ◽  
Clara Aicart-Ramos ◽  
Conchita Tros de Ilarduya ◽  
Emilio Aicart ◽  
...  

Ample evidence exists on the role of interleukin-12 (IL-12) in the response against many pathogens, as well as on its remarkable antitumor properties. However, the unexpected toxicity and disappointing results in some clinical trials are prompting the design of new strategies and/or vectors for IL-12 delivery. This study was conceived to further endorse the use of gemini cationic lipids (GCLs) in combination with zwitterionic helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphatidyl ethanol amine) as nanovectors for the insertion of plasmid DNA encoding for IL-12 (pCMV-IL12) into cells. Optimal GCL formulations previously reported by us were selected for IL-12-based biophysical experiments. In vitro studies demonstrated efficient pCMV-IL12 transfection by GCLs with comparable or superior cytokine levels than those obtained with commercial control Lipofectamine2000*. Furthermore, the nanovectors did not present significant toxicity, showing high cell viability values. The proteins adsorbed on the nanovector surface were found to be mostly lipoproteins and serum albumin, which are both beneficial to increase the blood circulation time. These outstanding results are accompanied by an initial physicochemical characterization to confirm DNA compaction and protection by the lipid mixture. Although further studies would be necessary, the present GCLs exhibit promising characteristics as candidates for pCMV-IL12 transfection in future in vivo applications.


2017 ◽  
Vol 5 (39) ◽  
pp. 7963-7973 ◽  
Author(s):  
Y. N. Zhao ◽  
Y. Z. Piao ◽  
C. M. Zhang ◽  
Y. M. Jiang ◽  
A. Liu ◽  
...  

Replacement of quaternary ammonium headgroups by tri-ornithine in lipids improved gene delivery in vitro and in vivo with little toxicity.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 181 ◽  
Author(s):  
Yoshiyuki Hattori ◽  
Satono Shimizu ◽  
Kei-ichi Ozaki ◽  
Hiraku Onishi

In this study, we examined the effect of cationic lipid type in folate (FA)-polyethylene glycol (PEG)-modified cationic liposomes on gene-silencing effects in tumor cells using cationic liposomes/siRNA complexes (siRNA lipoplexes). We used three types of cationic cholesterol derivatives, cholesteryl (3-((2-hydroxyethyl)amino)propyl)carbamate hydroiodide (HAPC-Chol), N-(2-(2-hydroxyethylamino)ethyl)cholesteryl-3-carboxamide (OH-Chol), and cholesteryl (2-((2-hydroxyethyl)amino)ethyl)carbamate (OH-C-Chol), and we prepared three types of FA-PEG-modified siRNA lipoplexes. The modification of cationic liposomes with 1–2 mol % PEG-lipid abolished the gene-silencing effect in human nasopharyngeal tumor KB cells, which overexpress the FA receptor (FR). In contrast, FA-PEG-modification of cationic liposomes restored gene-silencing activity regardless of the cationic lipid type in cationic liposomes. However, the optimal amount of PEG-lipid and FA-PEG-lipid in cationic liposomes for selective gene silencing and cellular uptake were different among the three types of cationic liposomes. Furthermore, in vitro transfection of polo-like kinase 1 (PLK1) siRNA by FA-PEG-modified liposomes exhibited strong cytotoxicity in KB cells, compared with PEG-modified liposomes; however, in in vivo therapy, intratumoral injection of PEG-modified PLK1 siRNA lipoplexes inhibited tumor growth of KB xenografts, as well as that of FA-PEG-modified PLK1 siRNA lipoplexes. From these results, the optimal formulation of PEG- and FA-PEG-modified liposomes for FR-selective gene silencing might be different between in vitro and in vivo transfection.


2005 ◽  
Vol 435 (1) ◽  
pp. 217-226 ◽  
Author(s):  
Marc A. Ilies ◽  
Betty H. Johnson ◽  
Fred Makori ◽  
Aaron Miller ◽  
William A. Seitz ◽  
...  

2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


2020 ◽  
Vol 20 (11) ◽  
pp. 821-830
Author(s):  
Prasad Pofali ◽  
Adrita Mondal ◽  
Vaishali Londhe

Background: Current gene therapy vectors such as viral, non-viral, and bacterial vectors, which are used for cancer treatment, but there are certain safety concerns and stability issues of these conventional vectors. Exosomes are the vesicles of size 40-100 nm secreted from multivesicular bodies into the extracellular environment by most of the cell types in-vivo and in-vitro. As a natural nanocarrier, exosomes are immunologically inert, biocompatible, and can cross biological barriers like the blood-brain barrier, intestinal barrier, and placental barrier. Objective: This review focusses on the role of exosome as a carrier to efficiently deliver a gene for cancer treatment and diagnosis. The methods for loading of nucleic acids onto the exosomes, advantages of exosomes as a smart intercellular shuttle for gene delivery and therapeutic applications as a gene delivery vector for siRNA, miRNA and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and also the limitations of exosomes as a gene carrier are all reviewed in this article. Methods: Mostly, electroporation and chemical transfection are used to prepare gene loaded exosomes. Results: Exosome-mediated delivery is highly promising and advantageous in comparison to the current delivery methods for systemic gene therapy. Targeted exosomes, loaded with therapeutic nucleic acids, can efficiently promote the reduction of tumor proliferation without any adverse effects. Conclusion: In the near future, exosomes can become an efficient gene carrier for delivery and a biomarker for the diagnosis and treatment of cancer.


Sign in / Sign up

Export Citation Format

Share Document