Fluorination on polyethylenimine allows efficient 2D and 3D cell culture gene delivery

2015 ◽  
Vol 3 (4) ◽  
pp. 642-650 ◽  
Author(s):  
Jia Lv ◽  
Hong Chang ◽  
Yu Wang ◽  
Mingming Wang ◽  
Jianru Xiao ◽  
...  

Fluorinationviaanhydride and oxirane reactions enhances the gene transfection efficacy of PEI on 3D cell cultures.

2020 ◽  
Vol 25 (3) ◽  
pp. 234-246
Author(s):  
Charles McRae White ◽  
Mark A. Haidekker ◽  
William S. Kisaalita

New insights into the biomechanical properties of cells are revealing the importance of these properties and how they relate to underlying molecular, architectural, and behavioral changes associated with cell state and disease processes. However, the current understanding of how these in vitro biomechanical properties are associated with in vivo processes has been developed based on the traditional monolayer (two-dimensional [2D]) cell culture, which traditionally has not translated well to the three-dimensional (3D) cell culture and in vivo function. Many gold standard methods and tools used to observe the biomechanical properties of 2D cell cultures cannot be used with 3D cell cultures. Fluorescent molecules can respond to external factors almost instantaneously and require relatively low-cost instrumentation. In this review, we provide the background on fluorescent molecular rotors, which are attractive tools due to the relationship of their emission quantum yield with environmental microviscosity. We make the case for their use in both 2D and 3D cell cultures and speculate on their fundamental and practical applications in cell biology.


2018 ◽  
Author(s):  
Tisong Liang ◽  
Rongfa Guan ◽  
Guozhou Cao ◽  
Haitao Shen ◽  
Zhenfeng Liu ◽  
...  

ABSTRACTThe 2D cell culture is the predominant in vitro model for numerous studies. However, 2D cell cultures may not accurately reflect the functions of three-dimensional (3D) tissues, which have extensive cell–cell and cell–matrix interactions; thus, using 2D cell cultures may lead to inaccurate experimental results. Therefore, to obtain adequate and detailed information about the antioxidant activity of cyanidin-3-O-glucoside (C3G) and C3G liposomes in the 2D and 3D cell culture models, we used in this study H2O2to construct the cell damage model and assess the antioxidant activity of C3G and C3G liposomes on Caco-2 cells cultured in the 3D model. We also measured the cell viability, cell morphology, and activity of glutathione (GSH), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and malondialdehyde (MDA) content of Caco-2 cells treated with H2O2, C3G, and C3G liposomes. Results showed that cells cultured in the 3D culture model formed a 3D structure and tight spheroids and showed increased cell activity and IC50. The C3G and C3G liposomes can enhance the activity of GSH, SOD, and T-AOC but decrease the MDA content. At the same time, the effect was more obvious in the 3D cell culture model than in the cells cultured in the 2D model. This study revealed that the results obtained from the 2D cell model may be inaccurate compared with the results obtained from the 3D cell model. A realistic mechanism study of antioxidant activity of C3G and C3G liposomes in the 3D cell model, which acts as an intermediate stage bridging the in vitro 2D and in vivo models, was observed.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Nina Compera ◽  
Scott Atwell ◽  
Johannes Wirth ◽  
Bernhard Wolfrum ◽  
Matthias Meier

For integration of 3D cell cultures on microfluidic large-scale integration chips, we upscaled pneumatic membrane valves using 3D-printed replica molds. Unit cell operations for 3D cell culture formation, culture, retrieval, and fusion are designed.


2020 ◽  
Author(s):  
John A. Terrell ◽  
Chengpeng Chen

In this manuscript, we present a one-stop protocol to extract collagen from various animal tissues, and apply it to fabricate 3D cell culture scaffolds.


2020 ◽  
Vol 8 (7) ◽  
pp. 1383-1388 ◽  
Author(s):  
Lei Yang ◽  
Yuan Zeng ◽  
Haibo Wu ◽  
Chunwu Zhou ◽  
Lei Tao

An antioxidant self-healing hydrogel has been facilely prepared using the Biginelli reaction and then used for 3D cell culture.


2020 ◽  
Author(s):  
John A. Terrell ◽  
Chengpeng Chen

In this manuscript, we present a one-stop protocol to extract collagen from various animal tissues, and apply it to fabricate 3D cell culture scaffolds.


2020 ◽  
Author(s):  
Istvan Grexa ◽  
Akos Diosdi ◽  
Andras Kriston ◽  
Nikita Moshkov ◽  
Maria Harmati ◽  
...  

AbstractRecent statistics report that more than 3.7 million new cases of cancer occur in Europe yearly, and the disease accounts for approximately 20 % of all deaths. High-throughput screening of cancer cell cultures has dominated the search for novel, effective anticancer therapies in the past decades. Recently, ex vivo 3D cell cultures from the patient’s own cancer cells have gained importance. We recently evaluated the major advancements and needs of the 3D cell cultures screening field, and we concluded that strictly standardized sample preparation is the most desired development. Here we propose an artificial intelligence-guided low-cost 3D cell culture delivery system. It consists of a light microscope, a micromanipulator, a syringe pump, and a controller computer. The system performs morphology-based feature analysis on spheroids and transfers the most appropriate ones between various sample holders. It can select the samples from standard sample holders, including Petri dishes and microwell plates, and then transfer them to a variety of holders up to 384 well plates. The device performs reliable semi- and fully automated spheroid transfer. This results in highly controlled experimental conditions and eliminates non-trivial side effects of sample variability that is a key aspect towards next-generation precision medicine.


RSC Advances ◽  
2020 ◽  
Vol 10 (72) ◽  
pp. 44397-44397
Author(s):  
Zhipan Wu ◽  
Rongfa Guan ◽  
Miao Tao ◽  
Fei Lyu ◽  
Guozhou Cao ◽  
...  

Correction for ‘Assessment of the toxicity and inflammatory effects of different-sized zinc oxide nanoparticles in 2D and 3D cell cultures’ by Zhipan Wu, Rongfa Guan, Miao Tao et al., RSC Adv., 2017, 7, 12437–12445, DOI: 10.1039/C6RA27334C.


2021 ◽  
Author(s):  
Bruna G. Carvalho ◽  
Franciele F. Vit ◽  
Hernandes F. Carvalho ◽  
Sang W. Han ◽  
Lucimara G. de la Torre

2018 ◽  
Vol 97 (4) ◽  
pp. e632-e640 ◽  
Author(s):  
Miltiadis Fiorentzis ◽  
Periklis Katopodis ◽  
Helen Kalirai ◽  
Berthold Seitz ◽  
Arne Viestenz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document