LAPONITE®-stabilized iron oxide nanoparticles for in vivo MR imaging of tumors

2016 ◽  
Vol 4 (3) ◽  
pp. 474-482 ◽  
Author(s):  
Ling Ding ◽  
Yong Hu ◽  
Yu Luo ◽  
Jianzhi Zhu ◽  
Yilun Wu ◽  
...  

LAPONITE®-stabilized iron oxide nanoparticles with great colloidal stability and high T2 relaxivity are synthesized by a facile controlled coprecipitation method, and can significantly enhance the contrast of tumors in vivo, indicating their tremendous potential in MR imaging applications.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 995
Author(s):  
Yucheng Peng ◽  
Xiaomeng Wang ◽  
Yue Wang ◽  
Yue Gao ◽  
Rui Guo ◽  
...  

The design of multimodal imaging nanoplatforms with improved tumor accumulation represents a major trend in the current development of precision nanomedicine. To this end, we report herein the preparation of macrophage (MA)-laden gold nanoflowers (NFs) embedded with ultrasmall iron oxide nanoparticles (USIO NPs) for enhanced dual-mode computed tomography (CT) and magnetic resonance (MR) imaging of tumors. In this work, generation 5 poly(amidoamine) (G5 PAMAM) dendrimer-stabilized gold (Au) NPs were conjugated with sodium citrate-stabilized USIO NPs to form hybrid seed particles for the subsequent growth of Au nanoflowers (NFs). Afterwards, the remaining terminal amines of dendrimers were acetylated to form the dendrimer-stabilized Fe3O4/Au NFs (for short, Fe3O4/Au DSNFs). The acquired Fe3O4/Au DSNFs possess an average size around 90 nm, display a high r1 relaxivity (1.22 mM−1 s−1), and exhibit good colloidal stability and cytocompatibility. The created hybrid DSNFs can be loaded within MAs without producing any toxicity to the cells. Through the mediation of MAs with a tumor homing and immune evasion property, the Fe3O4/Au DSNFs can be delivered to tumors more efficiently than those without MAs after intravenous injection, thus significantly improving the MR/CT imaging performance of tumors. The developed MA-mediated delivery system may hold great promise for enhanced tumor delivery of other contrast agents or nanomedicines for precision cancer nanomedicine applications.


2014 ◽  
Vol 26 (30) ◽  
pp. 5119-5123 ◽  
Author(s):  
Rubel Chakravarty ◽  
Hector F. Valdovinos ◽  
Feng Chen ◽  
Christina M. Lewis ◽  
Paul A. Ellison ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (51) ◽  
pp. 45135-45146 ◽  
Author(s):  
Ayse Ozdemir ◽  
Melis Sardan Ekiz ◽  
Alper Dilli ◽  
Mustafa O. Guler ◽  
Ayse B. Tekinay

The co-assembled SPION/PA system with its biocompatible and biodegradable properties can be considered as effective nanocomposite system for MR imaging.


Biomaterials ◽  
2013 ◽  
Vol 34 (33) ◽  
pp. 8382-8392 ◽  
Author(s):  
Jingchao Li ◽  
Linfeng Zheng ◽  
Hongdong Cai ◽  
Wenjie Sun ◽  
Mingwu Shen ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3068
Author(s):  
Sunyoung Woo ◽  
Soojin Kim ◽  
Hyunhong Kim ◽  
Young Woo Cheon ◽  
Seokjoo Yoon ◽  
...  

The surface charge of iron oxide nanoparticles (IONPs) plays a critical role in the interactions between nanoparticles and biological components, which significantly affects their toxicity in vitro and in vivo. In this study, we synthesized three differently charged IONPs (negative, neutral, and positive) based on catechol-derived dopamine, polyethylene glycol, carboxylic acid, and amine groups, via reversible addition–fragmentation chain transfer-mediated polymerization (RAFT polymerization) and ligand exchange. The zeta potentials of the negative, neutral, and positive IONPs were −39, −0.6, and +32 mV, respectively, and all three IONPs showed long-term colloidal stability for three months in an aqueous solution without agglomeration. The cytotoxicity of the IONPs was studied by analyzing cell viability and morphological alteration in three human cell lines, A549, Huh-7, and SH-SY5Y. Neither IONP caused significant cellular damage in any of the three cell lines. Furthermore, the IONPs showed no acute toxicity in BALB/c mice, in hematological and histological analyses. These results indicate that our charged IONPs, having high colloidal stability and biocompatibility, are viable for bio-applications.


2017 ◽  
Vol 6 (5) ◽  
pp. 449-472 ◽  
Author(s):  
Marina Fontes de Paula Aguiar ◽  
Javier Bustamante Mamani ◽  
Taylla Klei Felix ◽  
Rafael Ferreira dos Reis ◽  
Helio Rodrigues da Silva ◽  
...  

AbstractThe purpose of this study was to review the use of the magnetic targeting technique, characterized by magnetic driving compounds based on superparamagnetic iron oxide nanoparticles (SPIONs), as drug delivery for a specific brain locus in gliomas. We reviewed a process mediated by the application of an external static magnetic field for targeting SPIONs in gliomas. A search of PubMed, Cochrane Library, Scopus, and Web of Science databases identified 228 studies, 23 of which were selected based on inclusion criteria and predetermined exclusion criteria. The articles were analyzed by physicochemical characteristics of SPIONs used, cell types used for tumor induction, characteristics of experimental glioma models, magnetic targeting technical parameters, and analysis method of process efficiency. The study shows the highlights and importance of magnetic targeting to optimize the magnetic targeting process as a therapeutic strategy for gliomas. Regardless of the intensity of the patterned magnetic field, the time of application of the field, and nanoparticle used (commercial or synthesized), all studies showed a vast advantage in the use of magnetic targeting, either alone or in combination with other techniques, for optimized glioma therapy. Therefore, this review elucidates the preclinical and therapeutic applications of magnetic targeting in glioma, an innovative nanobiotechnological method.


Sign in / Sign up

Export Citation Format

Share Document