All-optical, polarization-insensitive light tuning properties in silver nanorod arrays covered with photoresponsive liquid crystals

2015 ◽  
Vol 17 (20) ◽  
pp. 13223-13227 ◽  
Author(s):  
Guangyuan Si ◽  
Eunice S. P. Leong ◽  
Xiaoxiao Jiang ◽  
Jiangtao Lv ◽  
Jiao Lin ◽  
...  

Silver nanorod array enabled homeotropic alignment of photoresponsive liquid crystals and polarization-insensitive optical tuning.

2013 ◽  
Vol 20 (3) ◽  
pp. 266-270
Author(s):  
Gazi Mohammad Sharif ◽  
Quang Nguyen-The ◽  
Motoharu Matsuura ◽  
Naoto Kishi

2020 ◽  
Vol 20 (6) ◽  
pp. 3512-3518
Author(s):  
Saleh Khan ◽  
Xiao-He Liu ◽  
Xi Jiang ◽  
Qing-Yun Chen

Highly efficient and effective porous ZnO nanorod arrays were fabricated by annealing ZnO nanorod arrays grown on a substrate using a simple hydrothermal method. The annealing had a positive effect on the nanorod morphology, structure and optical properties. The porosity was closely related to the annealing temperature. After heating at 450 °C, pores appeared on the nanorods. It was demonstrated that the porosity could be exploited to improve the visible light absorption of ZnO and reduce the bandgap from 3.11 eV to 2.99 eV. A combination of improved charge separation and transport of the heat-treated ZnO thus led to an increase in the photoelectrochemical properties. At an irradiation intensity of 100 mW/cm−2, the photocurrent density of the porous nanorod array was approximately 1.3 mA cm−2 at 1.2 V versus Ag/AgCl, which was five times higher than that of the ZnO nanorods. These results revealed the synthesis of promising porous ZnO nanorods for photoelectrochemical applications.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 908
Author(s):  
Fabrizio Ciciulla ◽  
Annamaria Zaltron ◽  
Riccardo Zamboni ◽  
Cinzia Sada ◽  
Francesco Simoni ◽  
...  

In this study, we present a new configuration of the recently reported optofluidic platform exploiting liquid crystals reorientation in lithium niobate channels. In order to avoid the threshold behaviour observed in the optical control of the device, we propose microchannels realized in a x-cut crystal closed by a z-cut crystal on the top. In this way, the light-induced photovoltaic field is not uniform inside the liquid crystal layer and therefore the conditions for a thresholdless reorientation are realized. We performed simulations of the photovoltaic effect based on the well assessed model for Lithium Niobate, showing that not uniform orientation and value of the field should be expected inside the microchannel. In agreement with the re-orientational properties of nematic liquid crystals, experimental data confirm the expected thresholdless behaviour. The observed liquid crystal response exhibits two different regimes and the response time shows an unusual dependence on light intensity, both features indicating the presence of additional photo-induced fields appearing above a light intensity of 107 W/m2.


2013 ◽  
Vol 103 (3) ◽  
pp. 034110 ◽  
Author(s):  
Tilak Joshi ◽  
Shri Singh ◽  
Amit Choudhary ◽  
R. P. Pant ◽  
A. M. Biradar

Author(s):  
D. Rouvillain ◽  
P. Brindel ◽  
O. Leclerc ◽  
J.P. Hamaide ◽  
H. Choumane ◽  
...  

2017 ◽  
Vol 21 (07n08) ◽  
pp. 476-492 ◽  
Author(s):  
Toshiyuki Akabane ◽  
Kazuchika Ohta ◽  
Tokihiro Takizawa ◽  
Takehiro Matsuse ◽  
Mutsumi Kimura

The most difficult problem on syntheses of the phthalocyanine-based liquid crystals is the long reaction time. In order to shorten the reaction time, we have developed novel Methods A, B and D, for the syntheses of phthalocyanine-based liquid crystals by using microwave heating and/or adding a phase transfer catalysis of Aliquat 336. A series of phthalocyanine derivatives C[Formula: see text]PcZn(1) ([Formula: see text] 10, 12, 14, 16 and 18: a, b, c and e) could be successfully synthesized in a dramatically short reaction time of 30–60 min using Methods A and B by microwave heating. On the other hand, anothor series of the derivatives C[Formula: see text](OH)PcZn (2a–2e) could not be synthesized by microwave heating. Therefore, all these derivatives were synthesized using conventional Method C by oil bath heating, but the reaction took a very long time (22.5–88 h). To shorten the reaction time, we have developed Method D by oil bath heating with adding a phase transfer catalyst of Aliquat 336. In this method, we successfully shortened the reaction time from 88 h to 3 h for the synthesis of the derivative 2a. Thus, the reaction time for oil bath heating can be also greatly shortened by adding the phase transfer catalyst of Aliquat 336. Furthermore, we have established from POM, DSC and temperature-dependent X-ray diffraction measurements that the derivative C[Formula: see text]PcZn (1a) shows a very rare pseudohexagonal columnar (Col[Formula: see text] phase, and that the derivatives C[Formula: see text]PcZn (1b–1e) and C[Formula: see text](OH)PcZn (2b–2e) exhibit spontaneous perfect homeotropic alignment in a large area between two glass plates in their Col[Formula: see text] phases.


Sign in / Sign up

Export Citation Format

Share Document