scholarly journals Comparative proteomic analysis of two distinct stem-cell populations from human amniotic fluid

2015 ◽  
Vol 11 (6) ◽  
pp. 1622-1632 ◽  
Author(s):  
Rita Romani ◽  
Francesca Fallarino ◽  
Irene Pirisinu ◽  
Mario Calvitti ◽  
Anna Caselli ◽  
...  

Characterization of two types of stem cells isolated from human amniotic fluid.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Jurate Savickiene ◽  
Grazina Treigyte ◽  
Sandra Baronaite ◽  
Giedre Valiuliene ◽  
Algirdas Kaupinis ◽  
...  

Human amniotic fluid stem cells have become an attractive stem cell source for potential applications in regenerative medicine and tissue engineering. The aim of this study was to characterize amniotic fluid-derived mesenchymal stem cells (AF-MSCs) from second- and third-trimester of gestation. Using two-stage protocol, MSCs were successfully cultured and exhibited typical stem cell morphological, specific cell surface, and pluripotency markers characteristics. AF-MSCs differentiated into adipocytes, osteocytes, chondrocytes, myocytes, and neuronal cells, as determined by morphological changes, cell staining, and RT-qPCR showing the tissue-specific gene presence for differentiated cell lineages. Using SYNAPT G2 High Definition Mass Spectrometry technique approach, we performed for the first time the comparative proteomic analysis between undifferentiated AF-MSCs from late trimester of gestation and differentiated into myogenic, adipogenic, osteogenic, and neurogenic lineages. The analysis of the functional and expression patterns of 250 high abundance proteins selected from more than 1400 demonstrated the similar proteome of cultured and differentiated AF-MSCs but the unique changes in their expression profile during cell differentiation that may help the identification of key markers in differentiated cells. Our results provide evidence that human amniotic fluid of second- and third-trimester contains stem cells with multilineage potential and may be attractive source for clinical applications.



2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Nathan Moore ◽  
Stephen Lyle

Long-lived cancer stem cells (CSCs) with indefinite proliferative potential have been identified in multiple epithelial cancer types. These cells are likely derived from transformed adult stem cells and are thought to share many characteristics with their parental population, including a quiescent slow-cycling phenotype. Various label-retaining techniques have been used to identify normal slow cycling adult stem cell populations and offer a unique methodology to functionally identify and isolate cancer stem cells. The quiescent nature of CSCs represents an inherent mechanism that at least partially explains chemotherapy resistance and recurrence in posttherapy cancer patients. Isolating and understanding the cell cycle regulatory mechanisms of quiescent cancer cells will be a key component to creation of future therapies that better target CSCs and totally eradicate tumors. Here we review the evidence for quiescent CSC populations and explore potential cell cycle regulators that may serve as future targets for elimination of these cells.



Blood ◽  
1994 ◽  
Vol 84 (8) ◽  
pp. 2422-2430 ◽  
Author(s):  
FC Zeigler ◽  
BD Bennett ◽  
CT Jordan ◽  
SD Spencer ◽  
S Baumhueter ◽  
...  

The flk-2/flt-3 receptor tyrosine kinase was cloned from a hematopoietic stem cell population and is considered to play a potential role in the developmental fate of the stem cell. Using antibodies derived against the extracellular domain of the receptor, we show that stem cells from both murine fetal liver and bone marrow can express flk-2/flt-3. However, in both these tissues, there are stem cell populations that do not express the receptor. Cell cycle analysis shows that stem cells that do not express the receptor have a greater percentage of the population in G0 when compared with the flk-2/flt-3- positive population. Development of agonist antibodies to the receptor shows a proliferative role for the receptor in stem cell populations. Stimulation with an agonist antibody gives rise to an expansion of both myeloid and lymphoid cells and this effect is enhanced by the addition of kit ligand. These studies serve to further illustrate the importance of the flk-2/flt-3 receptor in the regulation of the hematopoietic stem cell.



2011 ◽  
Vol 23 (1) ◽  
pp. 243 ◽  
Author(s):  
S.-A. Choi ◽  
J.-H. Lee ◽  
K.-J. Kim ◽  
E.-Y. Kim ◽  
K.-S. Park ◽  
...  

Adult stem cells have the capacity to differentiate into several different cell types, although their differentiation potential is limited compared with that of embryonic stem cells. Thus, adult stem cells are regarded as an exciting source for new cell therapies. Recent observations also indicate that stem cells derived from second-trimester amniocentesis are pluripotent – capable of differentiating into multiple lineages, including representatives of all 3 embryonic germ layers. In addition, amniotic fluid stem cells can be used in the generation of disease- or patient-specific stem cells, and amniotic fluid stem cells could be an ideal source for autologous cell replacement therapy in the later life of the fetus. The aim of the present study was to investigate isolation and characterisation of human amniotic fluid-derived mesenchymal stem cells (hAFS). We successfully isolated and characterised hAFS. Amniotic fluid samples were collected in the second trimester (median gestational age: 16 weeks, range: 15–17 weeks) for prenatal diagnosis. Specimens (2 mL) were centrifuged and incubated in low-glucose DMEM supplemented with 10% FBS, 25 ng of basic fibroblast growth factor, and 10 ng of epidermal growth factor at 37°C with 5% CO2. Human amniotic fluid cell (passage 6) expression of stem cell specific markers OCT-4, SOX2, Rex1, FGF4, and NANOG was confirmed by RT-PCR. Flow cytometric analysis showed that hAFS (passage 10) were positive for CD44, CD29, CD146, STRO1, and CD90 but negative for CD19. Immunocytochemical analysis of hAFS (passage 11) also showed the expression of OCT-4, SSEA-1, CD44, CD29, CD146, STRO1, and CD90, but hAFS were negative for CD19 and CD14. In conclusion, according to the previous studies on other mammalians, hAFS are an appropriate source of pluripotent stem cells. Here, we demonstrated that hAFS have a high expression of stem cell specific marker, including embryonic stem cell marker and mesenchymal stem cell marker. Therefore, amniotic fluid may be a suitable alternative source of multipotent stem cells.



2019 ◽  
Vol 4 (38) ◽  
pp. eaay7253
Author(s):  
Gabriel K. Griffin

Activation of NK-mediated immune surveillance clears leukemic stem cell populations.



2019 ◽  
Vol 40 (8) ◽  
pp. 937-946 ◽  
Author(s):  
Wenge Li ◽  
Samuel E Zimmerman ◽  
Karina Peregrina ◽  
Michele Houston ◽  
Joshua Mayoral ◽  
...  

Abstract Sporadic colon cancer accounts for approximately 80% of colorectal cancer (CRC) with high incidence in Western societies strongly linked to long-term dietary patterns. A unique mouse model for sporadic CRC results from feeding a purified rodent Western-style diet (NWD1) recapitulating intake for the mouse of common nutrient risk factors each at its level consumed in higher risk Western populations. This causes sporadic large and small intestinal tumors in wild-type mice at an incidence and frequency similar to that in humans. NWD1 perturbs intestinal cell maturation and Wnt signaling throughout villi and colonic crypts and decreases mouse Lgr5hi intestinal stem cell contribution to homeostasis and tumor development. Here we establish that NWD1 transcriptionally reprograms Lgr5hi cells, and that nutrients are interactive in reprogramming. Furthermore, the DNA mismatch repair pathway is elevated in Lgr5hi cells by lower vitamin D3 and/or calcium in NWD1, paralleled by reduced accumulation of relevant somatic mutations detected by single-cell exome sequencing. In compensation, NWD1 also reprograms Bmi1+ cells to function and persist as stem-like cells in mucosal homeostasis and tumor development. The data establish the key role of the nutrient environment in defining the contribution of two different stem cell populations to both mucosal homeostasis and tumorigenesis. This raises important questions regarding impact of variable human diets on which and how stem cell populations function in the human mucosa and give rise to tumors. Moreover, major differences reported in turnover of human and mouse crypt base stem cells may be linked to their very different nutrient exposures.



2006 ◽  
Vol 47 (6) ◽  
pp. 2417 ◽  
Author(s):  
Matthew J. German ◽  
Hubert M. Pollock ◽  
Bojun Zhao ◽  
Mark J. Tobin ◽  
Azzedine Hammiche ◽  
...  


2017 ◽  
Vol 217 (1) ◽  
pp. 79-92 ◽  
Author(s):  
Brice E. Keyes ◽  
Elaine Fuchs

Stem cells are imbued with unique qualities. They have the capacity to propagate themselves through symmetric divisions and to divide asymmetrically to engender new cells that can progress to differentiate into tissue-specific, terminal cell types. Armed with these qualities, stem cells in adult tissues are tasked with replacing decaying cells and regenerating tissue after injury to maintain optimal tissue function. With increasing age, stem cell functional abilities decline, resulting in reduced organ function and delays in tissue repair. Here, we review the effect of aging in five well-studied adult murine stem cell populations and explore age-related declines in stem cell function and their consequences for stem cell self-renewal, tissue homeostasis, and regeneration. Finally, we examine transcriptional changes that have been documented in aged stem cell populations and discuss new questions and future directions that this collection of data has uncovered.



2009 ◽  
Vol 23 (10) ◽  
pp. 3494-3505 ◽  
Author(s):  
Silvana Baglioni ◽  
Michela Francalanci ◽  
Roberta Squecco ◽  
Adriana Lombardi ◽  
Giulia Cantini ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document