scholarly journals Quiescent, Slow-Cycling Stem Cell Populations in Cancer: A Review of the Evidence and Discussion of Significance

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Nathan Moore ◽  
Stephen Lyle

Long-lived cancer stem cells (CSCs) with indefinite proliferative potential have been identified in multiple epithelial cancer types. These cells are likely derived from transformed adult stem cells and are thought to share many characteristics with their parental population, including a quiescent slow-cycling phenotype. Various label-retaining techniques have been used to identify normal slow cycling adult stem cell populations and offer a unique methodology to functionally identify and isolate cancer stem cells. The quiescent nature of CSCs represents an inherent mechanism that at least partially explains chemotherapy resistance and recurrence in posttherapy cancer patients. Isolating and understanding the cell cycle regulatory mechanisms of quiescent cancer cells will be a key component to creation of future therapies that better target CSCs and totally eradicate tumors. Here we review the evidence for quiescent CSC populations and explore potential cell cycle regulators that may serve as future targets for elimination of these cells.

Neurosurgery ◽  
2009 ◽  
Vol 65 (2) ◽  
pp. 426-426
Author(s):  
Melvin Field ◽  
Sergey Bushnev ◽  
Angel A. Alvarez ◽  
Nicholas Avgeropoulos ◽  
Kimi Sugaya

Sarcoma ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Matteo Trucco ◽  
David Loeb

Sarcomas represent a heterogeneous group of cancers thought to originate from malignant transformation of mesenchymal cells. There is increasing evidence that many, if not all, sarcomas contain within them tumor-initiating, or “cancer stem,” cells responsible for the initiation, maintenance, and potentially relapse and metastasis of the tumor. Various techniques have been adopted in recent years to identify putative sarcoma stem cell populations. The goal of this paper is to summarize the criteria used to identify a stem cell population, describe the more prominent markers and techniques used to isolate cancer stem cells in sarcomas, and review the evidence for the existence of cancer stem cells in sarcomas.


2021 ◽  
Author(s):  
Audrey QUEMENER ◽  
Frederic DESSAUGE ◽  
Marie-Helene PERRUCHOT ◽  
Nathalie LE FLOC'H ◽  
Isabelle LOUVEAU

Background: In pigs, the ratio between lean mass and fat mass determines production efficiency and is strongly influenced by the number and size of cells in tissues. During growth, the increase in the number of cells results from the recruitment of different populations of multipotent adult stem cells residing in the tissues. We hypothesized that the impact of a hygiene challenge on the proportions of adult stem cells in adipose tissue and skeletal muscle may differ between pigs with different residual feed intake (RFI), a measure of feed efficiency. Methods: At the age of 11 weeks, Large White pigs from two lines divergently selected for low and high RFI were housed in two contrasting hygiene conditions (good vs poor). After six weeks of challenge, pigs were slaughtered (n = 5-9/group). Samples of subcutaneous adipose tissue and longissimus muscle were collected, and cells from the stromal vascular fraction (FSV), which includes adult stem cell populations, were isolated from each tissue. Adipose and muscle cell populations from the FSV were phenotyped by flow cytometry using antibodies that targeted different cell surface markers (CD45 to identify hematopoietic cells; CD34, CD38, CD56 and CD140a to identify mesenchymal stem cells (MSC) with adipogenic and/or myogenic potential). Results: Adipose tissue and muscle shared some common MSC populations although MSC diversity was higher in muscle than in adipose tissue. In muscle, the CD45-CD56+CD34-CD140a+ and CD45-CD56+CD34+CD140a+ cell populations were abundant. Of these two cell populations, only the proportions of CD45-CD56+CD34+CD140a+ cells increased (P < 0.05) in pigs housed in poor hygiene compared with good hygiene conditions. For the CD45-CD56-CD34- cell population, present in low proportion, there was an interaction between hygiene condition and genetic line (P < 0.05) with a decrease in low RFI pigs housed in poor hygiene conditions. In adipose tissue, the two abundant MSC populations were CD45-CD56-CD34- and CD45-CD56+CD34-. The proportion of CD45-CD56-CD34- cells increased (P < 0.05) whereas the proportion of CD45-CD56+CD34- tended to decrease (P < 0.1) in pigs housed in poor conditions. This study shows that the proportions of some MSC populations were affected by hygiene of housing conditions in a tissue-dependent manner in pigs of both RFI lines. Therefore, these cell populations could be targeted to modulate growth and body composition in growing animals.


2021 ◽  
Vol 22 (15) ◽  
pp. 7813
Author(s):  
Lindsay Kraus ◽  
Chris Bryan ◽  
Marcus Wagner ◽  
Tabito Kino ◽  
Melissa Gunchenko ◽  
...  

Ischemic heart disease can lead to myocardial infarction (MI), a major cause of morbidity and mortality worldwide. Multiple stem cell types have been safely transferred into failing human hearts, but the overall clinical cardiovascular benefits have been modest. Therefore, there is a dire need to understand the basic biology of stem cells to enhance therapeutic effects. Bmi1 is part of the polycomb repressive complex 1 (PRC1) that is involved in different processes including proliferation, survival and differentiation of stem cells. We isolated cortical bones stem cells (CBSCs) from bone stroma, and they express significantly high levels of Bmi1 compared to mesenchymal stem cells (MSCs) and cardiac-derived stem cells (CDCs). Using lentiviral transduction, Bmi1 was knocked down in the CBSCs to determine the effect of loss of Bmi1 on proliferation and survival potential with or without Bmi1 in CBSCs. Our data show that with the loss of Bmi1, there is a decrease in CBSC ability to proliferate and survive during stress. This loss of functionality is attributed to changes in histone modification, specifically histone 3 lysine 27 (H3K27). Without the proper epigenetic regulation, due to the loss of the polycomb protein in CBSCs, there is a significant decrease in cell cycle proteins, including Cyclin B, E2F, and WEE as well as an increase in DNA damage genes, including ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR). In conclusion, in the absence of Bmi1, CBSCs lose their proliferative potential, have increased DNA damage and apoptosis, and more cell cycle arrest due to changes in epigenetic modifications. Consequently, Bmi1 plays a critical role in stem cell proliferation and survival through cell cycle regulation, specifically in the CBSCs. This regulation is associated with the histone modification and regulation of Bmi1, therefore indicating a novel mechanism of Bmi1 and the epigenetic regulation of stem cells.


2020 ◽  
Vol 7 ◽  
Author(s):  
Cihan Zamur ◽  
Uğur Topal ◽  
Harun Özdemir ◽  
Serdar Altınay

The most frequently diagnosed endocrine cancer, which causes more deaths than any other endocrine cancer, is thyroid cancer. Cancer stem cells are rare cells found in tumors that can regenerate themselves, phenotypically leads to various tumor cell populations and trigger tumorigenesis. Cancer stem cells have been identified in many cancers, including thyroid cancer. Having an understanding of the molecular mechanisms which control the biology of cancer stem cells and the disease processes will help us in designing more rational targeted therapies for aggressive thyroid cancers. In this review, we aimed to present the current accepted knowledge about thyroid stem cells, information regarding the cellular origin of thyroid cancer stem cells, and the clinical results of cancer stem cells present in the thyroid gland.


Blood ◽  
1994 ◽  
Vol 84 (8) ◽  
pp. 2422-2430 ◽  
Author(s):  
FC Zeigler ◽  
BD Bennett ◽  
CT Jordan ◽  
SD Spencer ◽  
S Baumhueter ◽  
...  

The flk-2/flt-3 receptor tyrosine kinase was cloned from a hematopoietic stem cell population and is considered to play a potential role in the developmental fate of the stem cell. Using antibodies derived against the extracellular domain of the receptor, we show that stem cells from both murine fetal liver and bone marrow can express flk-2/flt-3. However, in both these tissues, there are stem cell populations that do not express the receptor. Cell cycle analysis shows that stem cells that do not express the receptor have a greater percentage of the population in G0 when compared with the flk-2/flt-3- positive population. Development of agonist antibodies to the receptor shows a proliferative role for the receptor in stem cell populations. Stimulation with an agonist antibody gives rise to an expansion of both myeloid and lymphoid cells and this effect is enhanced by the addition of kit ligand. These studies serve to further illustrate the importance of the flk-2/flt-3 receptor in the regulation of the hematopoietic stem cell.


2019 ◽  
Vol 4 (38) ◽  
pp. eaay7253
Author(s):  
Gabriel K. Griffin

Activation of NK-mediated immune surveillance clears leukemic stem cell populations.


2019 ◽  
Vol 40 (8) ◽  
pp. 937-946 ◽  
Author(s):  
Wenge Li ◽  
Samuel E Zimmerman ◽  
Karina Peregrina ◽  
Michele Houston ◽  
Joshua Mayoral ◽  
...  

Abstract Sporadic colon cancer accounts for approximately 80% of colorectal cancer (CRC) with high incidence in Western societies strongly linked to long-term dietary patterns. A unique mouse model for sporadic CRC results from feeding a purified rodent Western-style diet (NWD1) recapitulating intake for the mouse of common nutrient risk factors each at its level consumed in higher risk Western populations. This causes sporadic large and small intestinal tumors in wild-type mice at an incidence and frequency similar to that in humans. NWD1 perturbs intestinal cell maturation and Wnt signaling throughout villi and colonic crypts and decreases mouse Lgr5hi intestinal stem cell contribution to homeostasis and tumor development. Here we establish that NWD1 transcriptionally reprograms Lgr5hi cells, and that nutrients are interactive in reprogramming. Furthermore, the DNA mismatch repair pathway is elevated in Lgr5hi cells by lower vitamin D3 and/or calcium in NWD1, paralleled by reduced accumulation of relevant somatic mutations detected by single-cell exome sequencing. In compensation, NWD1 also reprograms Bmi1+ cells to function and persist as stem-like cells in mucosal homeostasis and tumor development. The data establish the key role of the nutrient environment in defining the contribution of two different stem cell populations to both mucosal homeostasis and tumorigenesis. This raises important questions regarding impact of variable human diets on which and how stem cell populations function in the human mucosa and give rise to tumors. Moreover, major differences reported in turnover of human and mouse crypt base stem cells may be linked to their very different nutrient exposures.


Cancers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 972
Author(s):  
Dalius Kuciauskas ◽  
Nadezda Dreize ◽  
Marija Ger ◽  
Algirdas Kaupinis ◽  
Kristijonas Zemaitis ◽  
...  

Antitumor drug resistance remains a major challenge in cancer chemotherapy. Here we investigated the mechanism of acquired resistance to a novel anticancer agent RH1 designed to be activated in cancer cells by the NQO1 enzyme. Data show that in some cancer cells RH1 may act in an NQO1-independent way. Differential proteomic analysis of breast cancer cells with acquired resistance to RH1 revealed changes in cell energy, amino acid metabolism and G2/M cell cycle transition regulation. Analysis of phosphoproteomics and protein kinase activity by multiplexed kinase inhibitor beads showed an increase in the activity of protein kinases involved in the cell cycle and stemness regulation and downregulation of proapoptotic kinases such as JNK in RH1-resistant cells. Suppression of JNK leads to the increase of cancer cell resistance to RH1. Moreover, resistant cells have enhanced expression of stem cell factor (SCF) and stem cell markers. Inhibition of SCF receptor c-KIT resulted in the attenuation of cancer stem cell enrichment and decreased amounts of tumor-initiating cells. RH1-resistant cells also acquire resistance to conventional therapeutics while remaining susceptible to c-KIT-targeted therapy. Data show that RH1 can be useful to treat cancers in the NQO1-independent way, and targeting of the cancer stem cells might be an effective approach for combating resistance to RH1 therapy.


Sign in / Sign up

Export Citation Format

Share Document