Tribology of surface-grafted polymer brushes

2016 ◽  
Vol 1 (2) ◽  
pp. 141-154 ◽  
Author(s):  
Piotr Mocny ◽  
Harm-Anton Klok

The tribological properties, lubrication mechanism, characterization methods and potential applications of surface-attached polymer-based boundary lubricants are reviewed.

2020 ◽  
Vol 11 (44) ◽  
pp. 7050-7062 ◽  
Author(s):  
Monika Słowikowska ◽  
Karol Wolski ◽  
Artur J. Wójcik ◽  
Daniel Wesner ◽  
Holger Schönherr ◽  
...  

Surface-grafted polymer brushes with ladder-like architecture enforce extended conformation of the chains affecting their mechanical and tribological properties.


2012 ◽  
Vol 3 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Akihiro Nomura ◽  
Kohji Ohno ◽  
Takeshi Fukuda ◽  
Takaya Sato ◽  
Yoshinobu Tsujii

2021 ◽  
Vol 25 ◽  
Author(s):  
Jun Zheng ◽  
Yan Mei Jin ◽  
Xi Nan Yang ◽  
Lin Zhang ◽  
Dao Fa Jiang ◽  
...  

: Single-crystal X-ray diffraction analysis, nuclear magnetic resonance (NMR), and other characterization methods are used to characterize the complexes formed by cyclopentano-cucurbit[6]uril (abbreviated as CyP6Q[6]) as a host interacting with p-aminobenzenesulfonamide (G1), 4,4'-diaminobiphenyl (G2), and (E)-4,4'-diamino-1,2-diphenylethene (G3) as guests, respectively. The experimental results show that these three aromatic amine molecules have the same interaction mode with CyP6Q[6], interacting with its negatively electric potential portals. The supramolecular interactions include non-covalent interactions of hydrogen bonding and ion-dipole between host and guest molecules. CdCl2 acts as a structureinducing agent to form self-assemblies of multi-dimensional and multi-level supramolecular frameworks that may have potential applications in various functional materials.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yu Su ◽  
Le Gong ◽  
Dandan Chen

This paper used graphite nanoparticles with the diameter of 35 and 80 nm and LB2000 vegetable based oil to prepare graphite oil-based nanofluids with different volume fractions by two-step method. The tribological properties of graphite nanoparticles as LB2000 vegetable based oil additive were investigated with a pin-on-disk friction and wear tester. Field emission scanning electron microscope (FE-SEM) and energy dispersive spectroscopy (EDS) were used to examine the morphology and the content of some typical elements of wear scar, respectively. Further, the lubrication mechanism of graphite nanoparticles was explored. It was found that graphite nanoparticles as vegetable based oil additive could remarkably improve friction-reducing and antiwear properties of pure oil. With the increase of volume fraction of graphite nanoparticles, the friction coefficient and the wear volume of disk decreased. At the same volume fraction, the smaller particles, the lower friction coefficient and wear volume. The main reason for the improvement in friction-reducing and antiwear properties of vegetable based oil using graphite nanoparticles was that graphite nanoparticles could form a physical deposition film on the friction surfaces.


2019 ◽  
Vol 71 (1) ◽  
pp. 74-82 ◽  
Author(s):  
Chang Dong ◽  
Jianlin Sun ◽  
Zixuan Cheng ◽  
Yuqing Hou

Purpose The purpose of this paper is to synthesize a microemulsion and investigate its tribological properties as lubricant. Magnesium alloy warm rolling experiments were conducted. Surface morphology was observed and wear form was summarized. The composition of surface residues was analyzed, which sheds light on the lubrication mechanism of microemulsion. Design/methodology/approach A microemulsion was prepared with a proper amount of oil, surfactant, cosurfactant, water and other additives for magnesium alloy strip warm rolling. Tribological properties, such as maximum non-seizure load (PB), friction coefficient (μ) and wear scar diameter (D) of the microemulsion were measured and compared with those of emulsion and rolling oil on an MR-10A four-ball tribotester. The extreme pressure anti-wear coefficients (O) were calculated and compared. Warm rolling experiments were carried out on a Ф 170/400 × 300 mm four-high rolling mill at 240°C to compare the finish rolling thickness and surface quality of rolled AZ31B magnesium alloy strip under four lubrication states, namely, no lubrication, rolling oil, microemulsion and emulsion. The surface morphology after warm rolling was observed with confocal laser scanning microscope and scanning electron microscope, respectively. The composition of surface residues was analyzed with energy dispersive spectrometry and X-Ray photoelectron spectroscopy. Findings Surface morphology indicated that pitting wear, adhesive wear and ploughing wear were three main forms of wear in magnesium alloy warm rolling. Microemulsion had excellent lubrication properties with less residual oil remaining. Two types of adsorption layers formed on magnesium alloy strip surface were responsible for lubrication properties. MgSO4 and magnesium stearate in the reaction layer played a key role in anti-wear and friction-reduction in warm rolling. Originality/value The study is original and gives valuable information on lubrication mechanism of microemulsion in warm rolling of magnesium alloy strips.


2014 ◽  
Vol 6 (2) ◽  
Author(s):  
Iwona Cicha ◽  
Christoph D. Garlichs ◽  
Christoph Alexiou

AbstractRecent years brought about a widespread interest in the potential applications of nanotechnology for the diagnostics and the therapy of human diseases. With its promise of disease-targeted, patient-tailored treatment and reduced side effects, nanomedicine brings hope for millions of patients suffering of non-communicable diseases such as cancer or cardiovascular disorders. However, the emergence of the complex, multicomponent products based on new technologies poses multiple challenges to successful approval in clinical practice. Regulatory and development considerations, including properties of the components, reproducible manufacturing and appropriate characterization methods, as well as nanodrugs’ safety and efficacy are critical for rapid marketing of the new products. This review discusses the recent advances in cardiovascular applications of nanotechnologies and highlights the challenges that must be overcome in order to fill the gap existing between the promising bench trials and the successful bedside applications.


2017 ◽  
Vol 5 (1) ◽  
pp. 31-55 ◽  
Author(s):  
Shuhui Li ◽  
Jianying Huang ◽  
Zhong Chen ◽  
Guoqiang Chen ◽  
Yuekun Lai

In this review, we have briefly summarized the fundamental theoretical models and characterization methods of textile surfaces with special wettability, various fabrication technologies and potential applications.


Friction ◽  
2020 ◽  
Author(s):  
Hailong Liu ◽  
Yajing Huang ◽  
Yaozhu Wang ◽  
Xiaomin Zhao ◽  
Danqing Chen ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 591 ◽  
Author(s):  
Monika Zygo ◽  
Miroslav Mrlik ◽  
Marketa Ilcikova ◽  
Martina Hrabalikova ◽  
Josef Osicka ◽  
...  

This study reports the utilization of controlled radical polymerization as a tool for controlling the stimuli-responsive capabilities of graphene oxide (GO) based hybrid systems. Various polymer brushes with controlled molecular weight and narrow molecular weight distribution were grafted from the GO surface by surface-initiated atom transfer radical polymerization (SI-ATRP). The modification of GO with poly(n-butyl methacrylate) (PBMA), poly(glycidyl methacrylate) (PGMA), poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) and poly(methyl methacrylate) (PMMA) was confirmed by thermogravimetric analysis (TGA) coupled with online Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Various grafting densities of GO-based materials were investigated, and conductivity was elucidated using a four-point probe method. Raman shift and XPS were used to confirm the reduction of surface properties of the GO particles during SI-ATRP. The contact angle measurements indicated the changes in the compatibility of GOs with silicone oil, depending on the structure of the grafted polymer chains. The compatibility of the GOs with poly(dimethylsiloxane) was also investigated using steady shear rheology. The tunability of the electrorheological, as well as the photo-actuation capability, was investigated. It was shown that in addition to the modification of conductivity, the dipole moment of the pendant groups of the grafted polymer chains also plays an important role in the electrorheological (ER) performance. The compatibility of the particles with the polymer matrix, and thus proper particles dispersibility, is the most important factor for the photo-actuation efficiency. The plasticizing effect of the GO-polymer hybrid filler also has a crucial impact on the matrix stiffness and thus the ability to reversibly respond to the external light stimulation.


Sign in / Sign up

Export Citation Format

Share Document