Water steam effect during high CO2 chemisorption in lithium cuprate (Li2CuO2) at moderate temperatures: experimental and theoretical evidence

RSC Advances ◽  
2015 ◽  
Vol 5 (43) ◽  
pp. 34157-34165 ◽  
Author(s):  
Hugo A. Lara-García ◽  
Brenda Alcántar-Vázquez ◽  
Yuhua Duan ◽  
Heriberto Pfeiffer

Li2CuO2 is able to chemisorb high quantities of CO2 in the presence of water steam at low temperatures.

2012 ◽  
Vol 26 (5) ◽  
pp. 3110-3114 ◽  
Author(s):  
Tatiana L. Ávalos-Rendón ◽  
Heriberto Pfeiffer

2012 ◽  
Vol 37 (7) ◽  
pp. 5527-5531 ◽  
Author(s):  
Shohei Tada ◽  
Teruyuki Shimizu ◽  
Hiromichi Kameyama ◽  
Takahide Haneda ◽  
Ryuji Kikuchi

Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 93
Author(s):  
Duilio Aguilar Vizcarra ◽  
Doris Esenarro ◽  
Ciro Rodriguez

The research aims to design and construct a new mixed vertical boiler (fire tube – water tube) with three gas passes. The strength of this technological innovation is in the best use of the thermic transmission receiving fluid (hot water, steam, thermal oil), this due to its multipurpose function of three steps using alternative fuels (Diesel, Liquid Petroleum Gas LPG, natural gas), by improving the thermal efficiency of the boiler its temperature is reduced with gases at low temperatures, which in turn also reduce environmental pollution. The methodology focuses on calculating the transfer area with the calculation method that will allow dimensioning the boiler, considering the calculation of losses and the fluid speed, with two defined procedures, the first for fire tube and water tube boilers. And another alternative. The results obtained allowed optimizing the thermal efficiency level, achieving very significant thermal efficiency results: With LPG 92.4% for hot water and 92.42% to generate steam in the same way with natural gas 90.25% for hot water and 90.24% to generate steam as well with Diesel 2; 89.21% for hot water and 89.31% to generate steam.


2018 ◽  
Vol 96 (11) ◽  
pp. 1216-1223 ◽  
Author(s):  
S.A. Owerre

We present the first theoretical evidence of zero magnetic field topological (anomalous) thermal Hall effect due to Weyl magnons in stacked noncoplanar frustrated kagomé antiferromagnets. The Weyl magnons in this system result from macroscopically broken time-reversal symmetry by the scalar spin chirality of noncoplanar chiral spin textures. Most importantly, they come from the lowest excitation, therefore they can be easily observed experimentally at low temperatures due to the population effect. Similar to electronic Weyl nodes close to the Fermi energy, Weyl magnon nodes at the lowest excitation are the most important. Indeed, we show that the topological (anomalous) thermal Hall effect in this system arises from nonvanishing Berry curvature due to Weyl magnon nodes at the lowest excitation, and it depends on their distribution (distance) in momentum space. The present result paves the way to directly probe low excitation Weyl magnons and macroscopically broken time-reversal symmetry in three-dimensional frustrated magnets with the anomalous thermal Hall effect.


2018 ◽  
Vol 22 (6 Part A) ◽  
pp. 2679-2690 ◽  
Author(s):  
Ozlem Boydak ◽  
Ismail Ekmekci ◽  
Mustafa Yilmaz ◽  
Hasan Koten

Recently, new environment-friendly energy conversion technologies are required for using energy resources valid to power generation. Accordingly, low-grade heat sources as solar heat, geothermal energy, and waste heat, which have available temperatures ranging between 60 and 200?C, are supposed as applicants for recent new generation energy resources. As an alternative energy source, such low-grade heat sources usage generating electricity with the help of power turbine cycles was examined through this study. Such systems have existing technologies applicable at low temperatures and a compact structure at low cost, however, these systems have a low thermal efficiency of the Rankine cycles operated at low temperatures. An organic Rankine cycle is alike to a conventional steam power plant, except the working fluid, which is an organic, high molecular mass fluid with a liquid-vapor phase change, or boiling point, at a lower temperature than the water-steam phase change. The efficiency of an organic Rankine cycle is about between 10% and 20%, depending on temperature levels and availability of a valid fluid.


Author(s):  
E. Knapek ◽  
H. Formanek ◽  
G. Lefranc ◽  
I. Dietrich

A few years ago results on cryoprotection of L-valine were reported, where the values of the critical fluence De i.e, the electron exposure which decreases the intensity of the diffraction reflections by a factor e, amounted to the order of 2000 + 1000 e/nm2. In the meantime a discrepancy arose, since several groups published De values between 100 e/nm2 and 1200 e/nm2 /1 - 4/. This disagreement and particularly the wide spread of the results induced us to investigate more thoroughly the behaviour of organic crystals at very low temperatures during electron irradiation.For this purpose large L-valine crystals with homogenuous thickness were deposited on holey carbon films, thin carbon films or Au-coated holey carbon films. These specimens were cooled down to nearly liquid helium temperature in an electron microscope with a superconducting lens system and irradiated with 200 keU-electrons. The progress of radiation damage under different preparation conditions has been observed with series of electron diffraction patterns and direct images of extinction contours.


Author(s):  
H.A. Cohen ◽  
W. Chiu

The goal of imaging the finest detail possible in biological specimens leads to contradictory requirements for the choice of an electron dose. The dose should be as low as possible to minimize object damage, yet as high as possible to optimize image statistics. For specimens that are protected by low temperatures or for which the low resolution associated with negative stain is acceptable, the first condition may be partially relaxed, allowing the use of (for example) 6 to 10 e/Å2. However, this medium dose is marginal for obtaining the contrast transfer function (CTF) of the microscope, which is necessary to allow phase corrections to the image. We have explored two parameters that affect the CTF under medium dose conditions.Figure 1 displays the CTF for carbon (C, row 1) and triafol plus carbon (T+C, row 2). For any column, the images to which the CTF correspond were from a carbon covered hole (C) and the adjacent triafol plus carbon support film (T+C), both recorded on the same micrograph; therefore the imaging parameters of defocus, illumination angle, and electron statistics were identical.


Author(s):  
F. H. Louchet ◽  
L. P. Kubin

Experiments have been carried out on the 3 MeV electron microscope in Toulouse. The low temperature straining holder has been previously described Images given by an image intensifier are recorded on magnetic tape.The microtensile niobium samples are cut in a plane with the two operative slip directions [111] and lying in the foil plane. The tensile axis is near [011].Our results concern:- The transition temperature of niobium near 220 K: at this temperature and below an increasing difference appears between the mobilities of the screw and edge portions of dislocations loops. Source operation and interactions between screw dislocations of different slip system have been recorded.


Author(s):  
J. A. Traquair ◽  
E. G. Kokko

With the advent of improved dehydration techniques, scanning electron microscopy has become routine in anatomical studies of fungi. Fine structure of hyphae and spore surfaces has been illustrated for many hyphomycetes, and yet, the ultrastructure of the ubiquitous soil fungus, Geomyces pannorus (Link) Sigler & Carmichael has been neglected. This presentation shows that scanning and transmission electron microscopical data must be correlated in resolving septal structure and conidial release in G. pannorus.Although it is reported to be cellulolytic but not keratinolytic, G. pannorus is found on human skin, animals, birds, mushrooms, dung, roots, and frozen meat in addition to various organic soils. In fact, it readily adapts to growth at low temperatures.


Sign in / Sign up

Export Citation Format

Share Document