Adsorption behavior and removal mechanism of arsenic on graphene modified by iron–manganese binary oxide (FeMnOx/RGO) from aqueous solutions

RSC Advances ◽  
2015 ◽  
Vol 5 (83) ◽  
pp. 67951-67961 ◽  
Author(s):  
Jin Zhu ◽  
Zimo Lou ◽  
Yu Liu ◽  
Ruiqi Fu ◽  
Shams Ali Baig ◽  
...  

Graphene has been used as a supporting matrix to disperse FeMnOx due to its huge specific surface area, and the synthesized novel composite adsorbent (FeMnOx/RGO) was employed for arsenic removal.

RSC Advances ◽  
2015 ◽  
Vol 5 (6) ◽  
pp. 4058-4068 ◽  
Author(s):  
Zhipan Wen ◽  
Chaomeng Dai ◽  
Yan Zhu ◽  
Yalei Zhang

A novel MMIM with high specific surface area and pore volume was synthesized, and presented excellent performances for As(v) removal.


2012 ◽  
Vol 463-464 ◽  
pp. 543-547 ◽  
Author(s):  
Cheng Feng Li ◽  
Xiao Lu Ge ◽  
Shu Guang Liu ◽  
Fei Yu Liu

Core-shell structured hydroxyapatite (HA)/meso-silica was prepared and used as absorbance of methylene blue (MB). HA/meso-silica was synthesized in three steps: preparation of nano-sized HA by wet precipitation method, coating of dense silica and deposition of meso-silica shell on HA. As-received samples were characterized by Fourier transformed infare spectra, small angle X-ray diffraction, nitrogen adsorption-desorption isotherm and transmission electron microscopy. A wormhole framework mesostructure was found for HA/meso-silica. The specific surface area and pore volume were 128 m2•g-1 and 0.36 cm3•g-1, respectively. From the adsorption isotherm, HA/meso-silica with the great specific surface area exhibited a prominent adsorption capacity of MB (134.0 mg/g) in comparison with bare HA (0 mg/g). This study might shed light on surface modification of conventional low-cost adsorbents for removal of organic pollutants from aqueous solutions.


2019 ◽  
Vol 72 (9) ◽  
pp. 717
Author(s):  
Junying Song ◽  
Zhanbin Huang ◽  
Fengzhi Yang

Excess pentavalent vanadium(v) has severely degraded water quality and posed a huge threat to human health over the past several decades. Hence, it’s urgent and significant to explore a novel adsorbent which is low cost and efficient to treat vanadium pollution. In this work, a novel iron-manganese oxide@diatomite (MnFe2O4@DE) adsorbent with superior removal performance for simulated vanadium(v) wastewater was synthesised via a facile hydrothermal method. The as-prepared MnFe2O4@DE composite was characterised through different characterisation techniques. The results indicated that the MnFe2O4 nanoparticles were uniformly deposited on the surface of diatomite, resulting in a larger specific surface area and pore volume of the composite. In addition, the MnFe2O4@DE adsorbent exhibited the highest adsorption capacity for vanadium(v) (18.37mgg−1±0.5%), which was up to around 13.24 and 1.33 times as much as that of pure diatomite and MnFe2O4, respectively. This is mainly attributed to the enhanced specific surface area and pore volume. Furthermore, X-ray photoelectron spectroscopy (XPS) analysis demonstrated vanadium(v) could be reduced to low valence vanadium with low toxicity by the MnFe2O4@DE composite which could exist as VO2+ and VO+ cations in solution. The adsorption process was better fitted with a pseudo-second-order kinetic model and Langmuir model, which is spontaneous and endothermic. Overall, the novel MnFe2O4@DE composite could be applied as a promising adsorbent in addressing vanadium pollution issues due to its properties of low cost, effectiveness, and environmental friendliness.


2019 ◽  
Vol 80 (5) ◽  
pp. 939-949
Author(s):  
Siavash Davoodi ◽  
Behnaz Dahrazma ◽  
Nasser Goudarzi ◽  
Hajar Ghasemian Gorji

Abstract This study aims to investigate the performance and mechanism of raw (R-ND) and saponin-modified nano diatomite (M-ND) in the removal of azithromycin from aqueous solutions. Adsorbent characterization was performed using X-ray fluorescence, Brunauer–Emmett–Teller (BET), scanning electron spectroscopy, dynamic light scattering and energy-dispersive X-ray analyses. It was shown that the specific surface area of R-ND was 119.5 m2/g, 14-fold higher than that for raw diatomite, and for M-ND it was 90.1 m2/g. Various adsorption conditions, i.e. adsorbent dosage, pH, initial concentration and contact time were investigated. According to the results, despite reducing the specific surface area by 25%, modification of nano diatomite by saponin markedly enhanced its performance in the removal of azithromycin. The maximum adsorption capacity of R-ND and M-ND in the removal of azithromycin was 68 and 91.7 mg/g, respectively. Fourier transform infrared spectroscopy results revealed that azithromycin was adsorbed by O-H groups on the diatomite surface. Weber–Morris intra-particle diffusion (IPD) model suggested that while IPD is not the rate-controlling step in high concentrations of azithromycin, it is the only step that controls the rate of adsorption in low concentrations. In comparison to R-ND, M-ND showed a higher efficiency in the removal of azithromycin and, therefore, it can be used as a promising low-cost adsorbent to remove azithromycin from aqueous solutions.


Author(s):  
Zijia Li ◽  
Li He ◽  
Weiliang Tian ◽  
Renyao Huang ◽  
Xingpeng Wang ◽  
...  

Boehmite adsorbents with high percentage of exposed (020) facets and large specific surface area were prepared by a separate nucleation and aging steps route with excellent performance towards Congo red in batch and fixed-bed adsorption columns.


2010 ◽  
Vol 113-116 ◽  
pp. 1716-1721 ◽  
Author(s):  
Chun Sheng Ding ◽  
Fang Ming Ni ◽  
Hui Ye Cai ◽  
Qian Fen Zhu ◽  
Ying Long Zou

To optimize the conditions of modification and understand the absorption mechanism of activated carbon, the orthogonal test was used to select the best conditions of ammonia-modified activated carbon. The changes of activated carbon’s specific surface area, pore volume and surface acidic oxygen-containing functional groups were determined before and after modification by ammonia, and the equilibrium adsorption model for phenol was also explored. The results show that under the conditions of ammonia concentration of 10%, soaking time of 2h, activation time of 2.5h and activation temperature of 500°C, the best removal rate could be obtained. The specific surface area and pore volume of modified activated carbon were increased, whereas the acidic oxygen-containing groups of its surface were significantly reduced by 57.88% after modification. It means the surface polarity of carbon was decreased, and which was conducive to the adsorption of phenol, since phenol was a weakly polar substance. Both Freundlich and Langmuir model could reflect the adsorption behavior of modified activated carbon for phenol, while the Freundlich model was more properly, but for the unmodified activated carbon, Freundlich model was more suited to describe the adsorption behavior of phenol than Langmuir model.


2013 ◽  
Vol 684 ◽  
pp. 198-202 ◽  
Author(s):  
Takaaki Wajima

The removal of lead ions from aqueous solutions was studied using a sulfur-impregnated adsorbent. Coal was mixed with K2S powder and then heated at 800°C for 30 min in nitrogen to produce a sulfur-impregnated adsorbent. The sulfur-impregnated adsorbent prepared had a high sulfur content and high specific surface area. The adsorbent showed a high removal ability for lead ions, and a high removal ratio for lead ions in binary Pb2+-Na+ and Pb2+-Mg2+ solutions. This characteristics were similar to unitary Pb2+ solutions. These results indicate that the sulfur-impregnated adsorbent has a high selective adsorption ability for lead ions in aqueous solutions.


Minerals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 60 ◽  
Author(s):  
Andrei Shoppert ◽  
Irina Loginova ◽  
Denis Rogozhnikov ◽  
Kirill Karimov ◽  
Leonid Chaikin

This study investigates the use of red muds as adsorbents for As (V) removal. Red mud is a waste that contains a large amount of iron oxides and hydroxides, which are excellent adsorbents of arsenic, especially those possessing magnetic properties and a large specific surface area. The purpose of the experiments was to study the possibility of obtaining an effective adsorbent by the direct extraction of alumina from bauxite using the caustic alkali fusion method and to compare the arsenic removal effectiveness and other properties of these red muds with industrial samples. Red muds were described using methods such as X-ray diffraction spectrometry (XRD), X-ray fluorescence spectrometry (XRF), SEM, vibrating sample magnetometry (VSM), and the Brunauer–Emmett–Teller (BET) method. The main iron-containing phase of the red muds obtained by fusing bauxite with caustic alkali is maghemite, which has a large specific surface area. The specific surface area of the obtained samples varied in the range of 6.1–54.9 m2/g. Arsenic adsorption experiments were carried out using five different types of red muds: industrial Bayer, industrial sintering, and red mud obtained through bauxite alkali fusion at 300, 500, and 700 °C. The red muds obtained by fusing bauxite with caustic alkali at 300 and 500 °C had the highest effectiveness removing arsenic; their As(V) uptake capacity was over 30 mg/g.


Sign in / Sign up

Export Citation Format

Share Document