Optimization Conditions of Modified Activated Carbon and the Adsorption of Phenol

2010 ◽  
Vol 113-116 ◽  
pp. 1716-1721 ◽  
Author(s):  
Chun Sheng Ding ◽  
Fang Ming Ni ◽  
Hui Ye Cai ◽  
Qian Fen Zhu ◽  
Ying Long Zou

To optimize the conditions of modification and understand the absorption mechanism of activated carbon, the orthogonal test was used to select the best conditions of ammonia-modified activated carbon. The changes of activated carbon’s specific surface area, pore volume and surface acidic oxygen-containing functional groups were determined before and after modification by ammonia, and the equilibrium adsorption model for phenol was also explored. The results show that under the conditions of ammonia concentration of 10%, soaking time of 2h, activation time of 2.5h and activation temperature of 500°C, the best removal rate could be obtained. The specific surface area and pore volume of modified activated carbon were increased, whereas the acidic oxygen-containing groups of its surface were significantly reduced by 57.88% after modification. It means the surface polarity of carbon was decreased, and which was conducive to the adsorption of phenol, since phenol was a weakly polar substance. Both Freundlich and Langmuir model could reflect the adsorption behavior of modified activated carbon for phenol, while the Freundlich model was more properly, but for the unmodified activated carbon, Freundlich model was more suited to describe the adsorption behavior of phenol than Langmuir model.

2021 ◽  
Vol 15 (2) ◽  
pp. 131-144
Author(s):  
Chunjiang Jin ◽  
Huimin Chen ◽  
Luyuan Wang ◽  
Xingxing Cheng ◽  
Donghai An ◽  
...  

In this study, aspen wood sawdust was used as the raw material, and Fe(NO3)3 and CO2 were used as activators. Activated carbon powder (ACP) was produced by the one-step physicochemical activation method in an open vacuum tube furnace. The effects of different mass ratios of Fe(NO3)3 and aspen wood sawdust on the pore structure of ACP were examined under single-variable experimental conditions. The mass ratio was 0–0.4. The detailed characteristics of ACP were examined by nitrogen adsorption, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The adsorption capacity of ACP was established by simulating volatile organic compounds (VOCs) using ethyl acetate. The results showed that ACP has a good nanostructure with a large pore volume, specific surface area, and surface functional groups. The pore volume and specific surface area of Fe-AC-0.3 were 0.26 cm3/g and 455.36 m2/g, respectively. The activator played an important role in the formation of the pore structure and morphology of ACP. When the mass ratio was 0–0.3, the porosity increased linearly, but when it was higher than 0.3, the porosity decreased. For example, the pore volume and specific surface area of Fe-AC-0.4 reached 0.24 cm3/g and 430.87 m2/g, respectively. ACP presented good VOC adsorption performance. The Fe-AC-0.3 sample, which contained the most micropore structures, presented the best adsorption capacity for ethyl acetate at 712.58 mg/g. Under the action of the specific reaction products nitrogen dioxide (NO2) and oxygen, the surface of modified ACP samples showed different rich C/O/N surface functional groups, including C-H, C=C, C=O, C-O-C, and C-N.


2015 ◽  
Vol 1090 ◽  
pp. 154-159
Author(s):  
Sheng Zhou Zhang ◽  
Hong Ying Xia ◽  
Li Bo Zhang ◽  
Jin Hui Peng ◽  
Jian Wu ◽  
...  

Bamboo as the raw material is carbonized to prepare high specific surface area activated carbon by microwave heating under nitrogen atmosphere in our present work. Influences of activation agents on the preparation of activated carbon are studied. The results show that activation agents have a significant influence on the preparation of activated carbon. Under the heating time of 15 min, the adsorption capacity of the activated carbon prepared utilizing KOH as activation agent is the best. When the KOH/C ratio is 4, the iodine number and yield of activated carbon are 2298 mg/g and 39.82%, respectively. The BET specific surface area, total pore volume and average pore diameter of activated carbon are 3441 m2/g, 2.093 ml/g and 2.434 nm, respectively. The micropore volume of 1.304 ml/g is 62.30% of total pore volume, indicating that the activated carbon is microporous activated carbon.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 673
Author(s):  
Byeong-Hoon Lee ◽  
Hye-Min Lee ◽  
Dong Chul Chung ◽  
Byung-Joo Kim

Kenaf-derived activated carbons (AKC) were prepared by H3PO4 activation for automobile canisters. The microstructural properties of AKC were observed using Raman spectra and X-ray diffraction. The textural properties were studied using N2/77 K adsorption isotherms. Butane working capacity was determined according to the ASTM D5228. From the results, the specific surface area and total pore volume of the AKC was determined to be 1260–1810 m2/g and 0.68–2.77 cm3/g, respectively. As the activation time increased, the butane activity and retentivity of the AKC increased, and were observed to be from 32.34 to 58.81% and from 3.55 to 10.12%, respectively. The mesopore ratio of activated carbon increased with increasing activation time and was observed up to 78% at 973 K. This indicates that butane activity and retentivity could be a function not only of the specific surface area or total pore volume, but also of the mesopore volume fraction in the range of 2.8–3.8 nm and 5.5-6.5 nm of adsorbents, respectively. The AKC exhibit enhanced butane working capacity compared to commercial activated carbon with the high performance of butane working capacity due to its pore structure having a high mesopore ratio.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shijie Li ◽  
Tao Xing ◽  
Yilin Wang ◽  
Pengwei Lu ◽  
Weixue Kong ◽  
...  

In order to achieve the purpose of regulating the pore structure characteristics of activated carbon by adjusting the experimental parameters, the effects of carbonization temperature, carbonization time, pre-activation temperature, pre-activation time and impregnation time on the pore structure of sargassum-based activated carbon (SAC) are studied by orthogonal experiment. The gravimetric capacitance of SAC and the relationship between the gravimetric capacitance and specific surface area are also studied. The results show that the SACs prepared at all experimental conditions have developed pore structure and huge specific surface area, reaching 3,122 m2/g. The pore size of SAC is almost all within 6 nm, in which the micropores are mainly concentrated in 0.4–0.8 nm, the mesopores are mainly concentrated in 2–4 nm, and the number of micropores is significantly higher than that of mesopores. During the preparation of SAC, the effect of carbonization temperature on the specific surface area and specific pore volume of SAC is very significant. The effect of carbonization time on the specific surface area of SAC is significant, but the effect on specific pore volume can be ignored. The effects of pre-activation temperature, pre-activation time, and impregnation time on specific surface area and specific pore volume of SAC can be ignored. In addition, SACs show good gravimetric capacitance performance as electrode material for supercapacitors, which can significantly increase the capacitance of supercapacitors and thus broaden their applications. The gravimetric capacitance and specific surface area of SACs show a good linear relationship when the activated carbons have similar material properties and pore size distribution.


2019 ◽  
Vol 19 (7) ◽  
pp. 2054-2060
Author(s):  
Wang Li ◽  
Hu Yusha ◽  
Lu Yifei ◽  
Fu Jiangtao ◽  
Hu Ning ◽  
...  

Abstract Modified activated carbon/carbon nanotubes (AC*/CNT*) composite electrode was used as the electrode in a capacitive deionization (CDI) process for desalination in this study. The morphology and electrochemical characteristics of the modified electrode were discussed, and the results showed that after modification, the specific surface area of AC* reached 672.48 m2/g, increased by 29.43%; while the specific surface area of CNT* was 117.39 m2/g, reduced by 9.94% due to the strong oxidation of the mixed acid, the pore volume of CNT* increased by 48.28%. The electrode regeneration test proved that the electrode had good cycling stability. The pseudo-first-order kinetic model could better describe the adsorption rate of the electrodes for ions and the desalination ratio of the AC*/CNT* electrode reached 7.11 mg/g; the Langmuir model could well describe the adsorption mechanism of capacitive deionization, and indicated that the adsorption process of CDI was near to single ion layer adsorption; the change trend of electric mobility with migration time could be well fitted by exponential equations. This study explored a novel composite electrode coating, and initially explored the behavioral characteristics and trends of CDI technology.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1313 ◽  
Author(s):  
Hye-Min Lee ◽  
Byeong-Hoon Lee ◽  
Soo-Jin Park ◽  
Kay-Hyeok An ◽  
Byung-Joo Kim

The unburned hydrocarbon (HC) emissions of automobiles are subject to strong regulations because they are known to be converted into fine dust, ozone, and photochemical smog. Pitch-based activated carbon fibers (ACF) prepared by steam activation can be a good solution for HC removal. The structural characteristics of ACF were observed using X-ray diffraction. The pore characteristics were investigated using N2/77K adsorption isotherms. The butane working capacity (BWC) was determined according to ASTM D5228. From the results, the specific surface area and total pore volume of the ACF were determined to be 840–2630 m2/g and 0.33–1.34 cm3/g, respectively. The butane activity and butane retentivity of the ACF increased with increasing activation time and were observed to range between 15.78–57.33% and 4.19–11.47%, respectively. This indicates that n-butane adsorption capacity could be a function not only of the specific surface area or total pore volume but also of the sub-mesopore volume fraction in the range of 2.0–2.5 nm of adsorbents. The ACF exhibit enhanced BWC, and especially adsorption velocity, compared to commercial products (granules and pellets), with lower concentrations of n-butane due to a uniformly well-developed pore structure open directly to the outer surface.


BioResources ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. 7935-7942
Author(s):  
Bing Wang ◽  
Huiyuan Chen ◽  
Yonggang Li ◽  
Hongyu Si ◽  
Haomin Wei ◽  
...  

Effects of rapid cooling following pyrolysis were studied relative to the properties of activated carbon using different biomass as the raw materials. Coconut shell-based activated carbon (CSAC), bamboo-based activated carbon (BAC), and straw-based activated carbon (WSAC) were activated via high temperature and subsequently rapidly cooled to below minus 150 °C. The results showed that rapid cooling effectively increased the specific surface area, pore volume, and yield of activated carbons. Compared to natural cooling, rapid cooling increased the specific surface area of CSAC from 1076 m2/g to 1484 m2/g, increased the pore volume from 1.46 mL/g to 1.57 mL/g, decreased the average pore size from 2.25 nm to 2.13 nm, and increased the yield from 27.1% to 31.5%. The variation of the properties of activated carbon after rapid cooling using different raw materials and process conditions were studied using orthogonal experiments.


2017 ◽  
Vol 68 (3) ◽  
pp. 483-486
Author(s):  
Constantin Sorin Ion ◽  
Mihaela Bombos ◽  
Gabriel Vasilievici ◽  
Dorin Bombos

Desulfurisation of atmospheric distillation gasoline and gas oil was performed by adsorption process on Fe/ bentonite. The adsorbent was characterized by determining the adsorption isotherms, specific surface area, pore volume and average pore diameter. Adsorption experiments of atmospheric distillation gasoline and gas oil were performed in continuous system at 280�320oC, 5 atm and volume hourly space velocities of 1�2 h-1. The efficiency of adsorption on Fe / bentonite was better at desulphurisation of gasoline versus gas oil.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3811
Author(s):  
Zhongbao Liu ◽  
Jiayang Gao ◽  
Xin Qi ◽  
Zhi Zhao ◽  
Han Sun

In this study, the hydrothermal method was used to synthesize MIL-101(Cr), and activated carbon (AC) with different content was incorporated in to MIL-101(Cr), thereby obtaining AC-MIL-101(Cr) composite material with a huge specific surface area. The physical properties of MIL-101(Cr) and AC-MIL-101(Cr) were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), nitrogen adsorption and desorption and specific surface area testing, and ethanol vapor adsorption performance testing. The results show that with the increase of activated carbon content, the thermal stability of AC-MIL-101(Cr) is improved. Compared with the pure sample, the BET specific surface area and pore volume of AC-MIL-101(Cr) have increased; In the relative pressure range of 0–0.4, the saturated adsorption capacity of AC-MIL-101(Cr) to ethanol vapor decreases slightly. It is lower than MIL-101(Cr), but its adsorption rate is improved. Therefore, AC-MIL-101(Cr)/ethanol vapor has a good application prospect in adsorption refrigeration systems. The exploration of AC-MIL-101(Cr) composite materials in this paper provides a reference for the future application of carbon-based/MOFS composite adsorbent/ethanol vapor working fluid in adsorption refrigeration.


Sign in / Sign up

Export Citation Format

Share Document