Facile synthesis of high-surface-area activated carbon from coal for supercapacitors and high CO2 sorption

RSC Advances ◽  
2016 ◽  
Vol 6 (48) ◽  
pp. 42019-42028 ◽  
Author(s):  
Zhu Peng ◽  
Zhanglong Guo ◽  
Wei Chu ◽  
Min Wei

AC4T800t2 displayed the high specific capacitance (384 F g−1) at the scan rate of 5 mV s−1 and good cyclic stability (95% retention after 5000 cycles) at the current density of 5 A g−1. It also showed high CO2 uptake of 169.44 mL g−1 at 1 MPa.

NANO ◽  
2020 ◽  
Vol 15 (08) ◽  
pp. 2050106
Author(s):  
Rong-Rong Han ◽  
Hao-Yan Zhu ◽  
Min-Peng Li ◽  
Wen-Tong Yang ◽  
Chun Lu ◽  
...  

Biomass-based activated porous carbon (PC) with large porosity and high surface area has been considered as potential electrode material for supercapacitors. The spongy-like porous-activated carbon (SPAC) was prepared from millfeed by one-step carbonization/activation with KOH treatment. It shows three-dimensional (3D) spongy-like structure and high specific surface area (1535[Formula: see text]m2[Formula: see text]g[Formula: see text]). The SPAC electrode exhibits a high specific capacitance (237.9[Formula: see text]F[Formula: see text]g[Formula: see text] at a current density of 0.5[Formula: see text]A[Formula: see text]g[Formula: see text]) and a superior cycle stability (the capacitance retention of 95% after 10[Formula: see text]000 cycles at 2[Formula: see text]A[Formula: see text]g[Formula: see text]) in 2[Formula: see text]M KOH electrolyte, while the SPAC reveals a high specific capacitance of 157[Formula: see text]F[Formula: see text]g[Formula: see text] at 0.5[Formula: see text]A[Formula: see text]g[Formula: see text], good electrochemical stability with 93% capacitance retention after 5000 cycles in ionic liquids. Furthermore, the specific capacitance of SPAC//SPAC supercapacitor reaches 82.1[Formula: see text]F[Formula: see text]g[Formula: see text] at a current density of 0.5[Formula: see text]A[Formula: see text]g[Formula: see text] and achieves a high capacitance retention of 75% when the charging current increases to 10[Formula: see text]A[Formula: see text]g[Formula: see text] in 2[Formula: see text]M KOH electrolyte. The SPAC//SPAC supercapacitor possesses a high specific capacitance of 29.6[Formula: see text]F[Formula: see text]g[Formula: see text] at 0.5[Formula: see text]A[Formula: see text]g[Formula: see text] and a preeminent energy density of 27.8[Formula: see text]Wh[Formula: see text]kg[Formula: see text] (at a power density of 640[Formula: see text]W[Formula: see text]kg[Formula: see text]) in ionic liquids. This paper provides a convenient approach to synthesize low-cost biomass-based carbon material for supercapacitor applications.


2011 ◽  
Vol 1304 ◽  
Author(s):  
George Hasegawa ◽  
Mami Aoki ◽  
Kazuyoshi Kanamori ◽  
Kazuki Nakanishi ◽  
Teiichi Hanada ◽  
...  

ABSTRACTMacro/meso/microporous carbon monoliths doped with sulfur have been prepared from sulfonated polydivinylbenzene networks followed by the activation with CO2 resulted in the activated carbon monoliths with high surface area of 2400 m2 g−1. The monolithic electrode of the activated carbon shows remarkably high specific capacitance (175 F g−1 at 5 mV s−1 and 206 F g−1 at 0.5 A g−1).


RSC Advances ◽  
2017 ◽  
Vol 7 (33) ◽  
pp. 20694-20699 ◽  
Author(s):  
Juyoung Yun ◽  
Jaemoon Jun ◽  
Jungsup Lee ◽  
Jaehoon Ryu ◽  
Kisu Lee ◽  
...  

A supercapacitor based on nitrogen-doped carbon double shell hollow nanoparticles as the electrode material exhibited a high specific capacitance of 202 F g−1at a current density of 0.5 A g−1due to high surface area and nitrogen-doping.


2012 ◽  
Vol 463-464 ◽  
pp. 410-414 ◽  
Author(s):  
Jing Li ◽  
Xiao Dong Zhao

A low-cost organic compound mainly comprising of polyarylate was selected as precursor and a chemical activation method was used to prepare an activated carbon material of large surface area, with which the activated carbon electrodes of high specific capacitance were fabricated for supercapacitor. Impact of activating temperature on the specific capacitance of activated carbon electrode was studied, the relationship between the pore structure, surface area and specific capacitance of activated carbon electrode were discussed. The specific capacitance and ESR (equivalent series resistance ) of the electrode fabricated with the activated carbon prepared at 700°C is 211F.g-1 and 0.2Ω/cm2 in hydrous electrolyte and the 122F/g and 1Ω/cm2 in orgnic electrolyte respectively. Because of the different ion diameter in orgnic and hydrous electrolyte, activated electrode show different electrochemical behavior in cyclic voltammetry examinations.


2019 ◽  
Author(s):  
Chem Int

Activated carbon was prepared from molasses, which are natural precursors of vegetable origin resulting from the sugar industry. A simple elaboration process, based on chemical activation with phosphoric acid, was proposed. The final product, prepared by activation of molasses/phosphoric acid mixture in air at 500°C, presented high surface area (more than 1400 m2/g) and important maximum adsorption capacity for methylene blue (625 mg/g) and iodine (1660 mg/g). The activated carbon (MP2(500)) showed a good potential for the adsorption of Cr(VI), Cu(II) and Pb(II) from aqueous solutions. The affinity for the three ions was observed in the following order Cu2+ Cr6+ Pb2+. The process is governed by monolayer adsorption following the Langmuir model, with a correlation coefficient close to unity.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 21-28
Author(s):  
S.-C. Kim ◽  
D.-K. Lee

TiO2-coated granular activated carbon was employed for the removal of toxic microcystin-LR from water. High surface area of the activated carbon provided sites for the adsorption of microcystin-LR, and the adsorbed microcystin-LR migrated continuously onto the surface of TiO2 particles which located mainly at the exterior surface in the vicinity of the entrances of the macropores of the activated carbon. The migrated microcystin-LR was finally degraded into nontoxic products and CO2 very quickly. These combined roles of the activated carbon and TiO2 showed a synergistic effect on the efficient degradation of toxic microcystin-LR. A continuous flow fluidized bed reactor with the TiO2-coated activated carbon could successfully be employed for the efficient photocatalytic of microcystin-LR.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1907
Author(s):  
Fatma Hussain Emamy ◽  
Ali Bumajdad ◽  
Jerzy P. Lukaszewicz

Optimizing the physicochemical properties of the chitosan-based activated carbon (Ch-ACs) can greatly enhance its performance toward heavy metal removal from contaminated water. Herein, Ch was converted into a high surface area (1556 m2/g) and porous (0.69 cm3/g) ACs with large content of nitrogen (~16 wt%) using K2CO3 activator and urea as nitrogen-enrichment agents. The prepared Ch-ACs were tested for the removal of Cr(VI) and Pb(II) at different pH, initial metal ions concentration, time, activated carbon dosage, and temperature. For Cr(VI), the best removal was at pH = 2, while for Pb(II) the best pH for its removal was in the range of 4–6. At 25 °C, the Temkin model gives the best fit for the adsorption of Cr(VI), while the Langmuir model was found to be better for Pb(II) ions. The kinetics of adsorption of both heavy metal ions were found to be well-fitted by a pseudo-second-order model. The findings show that the efficiency and the green properties (availability, recyclability, and cost effectiveness) of the developed adsorbent made it a good candidate for wastewaters treatment. As preliminary work, the prepared sorbent was also tested regarding the removal of heavy metals and other contaminations from real wastewater and the obtained results were found to be promising.


Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 40 ◽  
Author(s):  
Kang-Kai Liu ◽  
Biao Jin ◽  
Long-Yue Meng

In this study, three-dimensional glucose/graphene-based aerogels (G/GAs) were synthesized using the hydrothermal reduction and CO2 activation method. Graphene oxide (GO) was used as a matrix, and glucose was used as a binder for the orientation of the GO morphology in an aqueous media. We determined that G/GAs exhibited narrow mesopore size distribution, a high surface area (763 m2 g−1), and hierarchical macroporous and mesoporous structures. These features contributed to G/GAs being promising adsorbents for the removal of CO2 (76.5 mg g−1 at 298 K), CH4 (16.8 mg g−1 at 298 K), and H2 (12.1 mg g−1 at 77 K). G/GAs presented excellent electrochemical performance, featuring a high specific capacitance of 305.5 F g−1 at 1 A g−1, and good cyclic stability of 98.5% retention after 10,000 consecutive charge-discharge cycles at 10 A g−1. This study provided an efficient approach for preparing graphene aerogels exhibiting hierarchical porosity for gas adsorption and supercapacitors.


Sign in / Sign up

Export Citation Format

Share Document