scholarly journals A cell-based microarray to investigate combinatorial effects of microparticle-encapsulated adjuvants on dendritic cell activation

2016 ◽  
Vol 4 (9) ◽  
pp. 1672-1685 ◽  
Author(s):  
Abhinav P. Acharya ◽  
Matthew R. Carstens ◽  
Jamal S. Lewis ◽  
Natalia Dolgova ◽  
C. Q. Xia ◽  
...  

Experimental vaccine adjuvants are being designed to target specific toll-like receptors (TLRs) alone or in combination, expressed by antigen presenting cells, notably dendritic cells (DCs).

2007 ◽  
Vol 81 (18) ◽  
pp. 9778-9789 ◽  
Author(s):  
Janet L. Weslow-Schmidt ◽  
Nancy A. Jewell ◽  
Sara E. Mertz ◽  
J. Pedro Simas ◽  
Joan E. Durbin ◽  
...  

ABSTRACT The respiratory tract is a major mucosal site for microorganism entry into the body, and type I interferon (IFN) and dendritic cells constitute a first line of defense against viral infections. We have analyzed the interaction between a model DNA virus, plasmacytoid dendritic cells, and type I IFN during lung infection of mice. Our data show that murine gammaherpesvirus 68 (γHV68) inhibits type I IFN secretion by dendritic cells and that plasmacytoid dendritic cells are necessary for conventional dendritic cell maturation in response to γHV68. Following γHV68 intranasal inoculation, the local and systemic IFN-α/β response is below detectable levels, and plasmacytoid dendritic cells are activated and recruited into the lung with a tissue distribution that differs from that of conventional dendritic cells. Our results suggest that plasmacytoid dendritic cells and type I IFN have important but independent roles during the early response to a respiratory γHV68 infection. γHV68 infection inhibits type I IFN production by dendritic cells and is a poor inducer of IFN-α/β in vivo, which may serve as an immune evasion strategy.


2008 ◽  
Vol 125 (1-2) ◽  
pp. 18-30 ◽  
Author(s):  
Chutitorn Ketloy ◽  
Anneke Engering ◽  
Utaiwan Srichairatanakul ◽  
Amporn Limsalakpetch ◽  
Kosol Yongvanitchit ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shanfeng Sun ◽  
Yanjun Gu ◽  
Junjuan Wang ◽  
Cheng Chen ◽  
Shiwen Han ◽  
...  

Type 1 allergies, involve a complex interaction between dendritic cells and other immune cells, are pathological type 2 inflammatory immune responses against harmless allergens. Activated dendritic cells undergo extensive phenotypic and functional changes to exert their functions. The activation, differentiation, proliferation, migration, and mounting of effector reactions require metabolic reprogramming. Dendritic cells are important upstream mediators of allergic responses and are therefore an important effector of allergies. Hence, a better understanding of the underlying metabolic mechanisms of functional changes that promote allergic responses of dendritic cells could improve the prevention and treatment of allergies. Metabolic changes related to dendritic cell activation have been extensively studied. This review briefly outlines the basis of fatty acid oxidation and its association with dendritic cell immune responses. The relationship between immune metabolism and effector function of dendritic cells related to allergic diseases can better explain the induction and maintenance of allergic responses. Further investigations are warranted to improve our understanding of disease pathology and enable new treatment strategies.


Blood ◽  
2011 ◽  
Vol 117 (5) ◽  
pp. 1585-1594 ◽  
Author(s):  
Sagarika Chakrabarty ◽  
James T. Snyder ◽  
Jijia Shen ◽  
Hooman Azmi ◽  
Paul Q. Hu ◽  
...  

Abstract CD40L on CD4+ T cells plays a vital role in the activation of antigen-presenting cells, thus catalyzing a positive feedback loop for T-cell activation. Despite the pivotal juxtaposition of CD40L between antigen-presenting cells and T-cell activation, only a T-cell receptor stimulus is thought to be required for early CD40L surface expression. We show, for the first time, that CD40L expression on peripheral blood CD4+ T cells is highly dependent on a cell-cell interaction with CD14hiCD16− monocytes. Interactions with ICAM-1, LFA-3, and to a lesser extent CD80/CD86 contribute to this enhancement of CD40L expression but are not themselves sufficient. The contact-mediated increase in CD40L expression is dependent on new mRNA and protein synthesis. Circulating myeloid dendritic cells also possess this costimulatory activity. By contrast, CD14loCD16+ monocytes, plasmacytoid dendritic cells, B-cell lymphoma lines, and resting, activated, and Epstein-Barr virus–immortalized primary B cells all lack the capacity to up-regulate early CD40L. The latter indicates that a human B cell cannot activate its cognate T cell to deliver CD40L-mediated help. This finding has functional implications for the role of biphasic CD40L expression, suggesting that the early phase is associated with antigen-presenting cell activation, whereas the late phase is related to B-cell activation.


2015 ◽  
Vol 195 (3) ◽  
pp. 1025-1033 ◽  
Author(s):  
Lajos Széles ◽  
Felix Meissner ◽  
Isabelle Dunand-Sauthier ◽  
Christoph Thelemann ◽  
Micha Hersch ◽  
...  

Blood ◽  
2003 ◽  
Vol 102 (5) ◽  
pp. 1745-1752 ◽  
Author(s):  
Keith Crawford ◽  
Aleksandra Stark ◽  
Betsy Kitchens ◽  
Kerry Sternheim ◽  
Vassilios Pantazopoulos ◽  
...  

Abstract We have shown previously that primary dendritic cells and monocytes express equal levels of CD14 but are distinguishable by the presence of CD2 on dendritic cells. CD2 is known to mediate the activation of T and natural killer (NK) cells through its interaction with CD58. CD2 epitopes recognized by anti-T111, -T112, and -T113 monoclonal antibodies (mAbs) are present on dendritic cells. Here we show that CD2 engagement significantly increases class II, costimulatory (CD40, CD80, CD86), adhesion (CD54, CD58), and CCR7 molecule expression on primary dendritic cells. Conversely, minimal or no change in the expression of the above antigens occurs on monocyte-derived dendritic cells, because these molecules are already maximally expressed. However, both kinds of dendritic cells release interleukin-1β (IL-1β) and IL-12 after CD2 engagement. Lastly, interference with dendritic cell CD2–T-cell CD58 engagement decreases naive CD4+CD45RA+ T-cell proliferation. Collectively, our results suggest another role of the CD2-CD58 pathway that allows nonimmune and immune cells to interact directly with dendritic cells and initiate innate and adaptive immune responses.


Sign in / Sign up

Export Citation Format

Share Document