Protein nanowires with conductive properties

2015 ◽  
Vol 3 (25) ◽  
pp. 6499-6504 ◽  
Author(s):  
Anders Elfwing ◽  
Fredrik G. Bäcklund ◽  
Chiara Musumeci ◽  
Olle Inganäs ◽  
Niclas Solin

We have investigated protein fibrils decorated with metallic polymers using conductive AFM.

Author(s):  
Lucile C. Teague Sheridan ◽  
Linda Conohan ◽  
Chong Khiam Oh

Abstract Atomic force microscopy (AFM) methods have provided a wealth of knowledge into the topographic, electrical, mechanical, magnetic, and electrochemical properties of surfaces and materials at the micro- and nanoscale over the last several decades. More specifically, the application of conductive AFM (CAFM) techniques for failure analysis can provide a simultaneous view of the conductivity and topographic properties of the patterned features. As CMOS technology progresses to smaller and smaller devices, the benefits of CAFM techniques have become apparent [1-3]. Herein, we review several cases in which CAFM has been utilized as a fault-isolation technique to detect middle of line (MOL) and front end of line (FEOL) buried defects in 20nm technologies and beyond.


Author(s):  
Chuan Zhang ◽  
Yinzhe Ma ◽  
Gregory Dabney ◽  
Oh Chong Khiam ◽  
Esther P.Y. Chen

Abstract Soft failures are among the most challenging yield detractors. They typically show test parameter sensitive characteristics, which would pass under certain test conditions but fail under other conditions. Conductive-atomic force microscopy (CAFM) emerged as an ideal solution for soft failure analysis that can balance the time and thoroughness. By inserting CAFM into the soft failure analysis flow, success rate of such type of analysis can be significantly enhanced. In this paper, a logic chain soft failure and a SRAM local bitline soft failure are used as examples to illustrate how this failure analysis methodology provides a powerful and efficient solution for soft failure analysis.


2020 ◽  
Vol 04 ◽  
Author(s):  
A. Guillermo Bracamonte

: Graphene as Organic material showed special attention due to their electronic and conductive properties. Moreover, its highly conjugated chemical structures and relative easy modification permitted varied design and control of targeted properties and applications. In addition, this Nanomaterial accompanied with pseudo Electromagnetic fields permitted photonics, electronics and Quantum interactions with their surrounding that generated new materials properties. In this context, this short Review, intends to discuss many of these studies related with new materials based on graphene for light and electronic interactions, conductions, and new modes of non-classical light generation. It should be highlighted that these new materials and metamaterials are currently in progress. For this reason it was showed and discussed some representative examples from Fundamental Research with Potential Applications as well as for their incorporations to real Advanced devices and miniaturized instrumentation. In this way, it was proposed this Special issue entitled “Design and synthesis of Hybrids Graphene based Metamaterials”, in order to open and share the knowledge of the Current State of the Art in this Multidisciplinary field.


Nanoscale ◽  
2021 ◽  
Author(s):  
Louis Thomas ◽  
Imane Arbouch ◽  
David Guérin ◽  
Xavier Wallart ◽  
Colin van Dyck ◽  
...  

We report the formation of self-assembled monolayers of a molecular photoswitch (azobenzene-bithiophene derivative, AzBT) on cobalt via a thiol covalent bond. We study the electrical properties of the molecular junctions...


Polymer ◽  
2021 ◽  
pp. 123641
Author(s):  
Nicholas C. Bontrager ◽  
Samantha Radomski ◽  
Samantha P. Daymon ◽  
R. Daniel Johnson ◽  
Kevin M. Miller

2021 ◽  
Vol 22 (10) ◽  
pp. 5075
Author(s):  
Mantas Ziaunys ◽  
Andrius Sakalauskas ◽  
Kamile Mikalauskaite ◽  
Ruta Snieckute ◽  
Vytautas Smirnovas

Prion protein aggregation into amyloid fibrils is associated with the onset and progression of prion diseases—a group of neurodegenerative amyloidoses. The process of such aggregate formation is still not fully understood, especially regarding their polymorphism, an event where the same type of protein forms multiple, conformationally and morphologically distinct structures. Considering that such structural variations can greatly complicate the search for potential antiamyloid compounds, either by having specific propagation properties or stability, it is important to better understand this aggregation event. We have recently reported the ability of prion protein fibrils to obtain at least two distinct conformations under identical conditions, which raised the question if this occurrence is tied to only certain environmental conditions. In this work, we examined a large sample size of prion protein aggregation reactions under a range of temperatures and analyzed the resulting fibril dye-binding, secondary structure and morphological properties. We show that all temperature conditions lead to the formation of more than one fibril type and that this variability may depend on the state of the initial prion protein molecules.


Author(s):  
Mazinov Alim Seit-Ametovich ◽  
Tyutyunik Andrey Sergeevich ◽  
Gurchenko Vladimir Sergeevich ◽  
Fitaev Ibraim Shevchetovich ◽  
Vasilchenko Vladislav Maksimovich

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mayukh Nath ◽  
Shovan Maity ◽  
Shitij Avlani ◽  
Scott Weigand ◽  
Shreyas Sen

AbstractRadiative communication using electromagnetic fields is the backbone of today’s wirelessly connected world, which implies that the physical signals are available for malicious interceptors to snoop within a 5–10 m distance, also increasing interference and reducing channel capacity. Recently, Electro-quasistatic Human Body Communication (EQS-HBC) was demonstrated which utilizes the human body’s conductive properties to communicate without radiating the signals outside the body. Previous experiments showed that an attack with an antenna was unsuccessful at a distance more than 1 cm from the body surface and 15 cm from an EQS-HBC device. However, since this is a new communication modality, it calls for an investigation of new attack modalities—that can potentially exploit the physics utilized in EQS-HBC to break the system. In this study, we present a novel attack method for EQS-HBC devices, using the body of the attacker itself as a coupling surface and capacitive inter-body coupling between the user and the attacker. We develop theoretical understanding backed by experimental results for inter-body coupling, as a function of distance between the subjects. We utilize this newly developed understanding to design EQS-HBC transmitters that minimizes the attack distance through inter-body coupling, as well as the interference among multiple EQS-HBC users due to inter-body coupling. This understanding will allow us to develop more secure and robust EQS-HBC based body area networks in the future.


Sign in / Sign up

Export Citation Format

Share Document