Calcium phosphate nanoparticles prepared from infusion fluids for stem cell transfection: process optimization and cytotoxicity analysis

2017 ◽  
Vol 5 (5) ◽  
pp. 972-981 ◽  
Author(s):  
Quazi T. H. Shubhra ◽  
Ayako Oyane ◽  
Hiroko Araki ◽  
Maki Nakamura ◽  
Hideo Tsurushima

The preparation of calcium phosphate nanoparticles from infusion fluids for gene delivery to stem cells and CHO-K1 cells is reported.

2020 ◽  
Vol 21 (7) ◽  
pp. 2627
Author(s):  
Olivier Gröninger ◽  
Samuel Hess ◽  
Dirk Mohn ◽  
Elia Schneider ◽  
Wendelin Stark ◽  
...  

The microenvironment of mesenchymal stem cells (MSCs) is responsible for the modulation in MSC commitment. Nanocomposites with an inorganic and an organic component have been investigated, and osteogenesis of MSCs has been attributed to inorganic phases such as calcium phosphate under several conditions. Here, electrospun meshes and two-dimensional films of poly(lactic-co-glycolic acid) (PLGA) or nanocomposites of PLGA and amorphous calcium phosphate nanoparticles (PLGA/aCaP) seeded with human adipose-derived stem cells (ASCs) were analyzed for the expression of selected marker genes. In a two-week in vitro experiment, osteogenic commitment was not found to be favored on PLGA/aCaP compared to pure PLGA. Analysis of the medium revealed a significant reduction of the Ca2+ concentration when incubated with PLGA/aCaP, caused by chemical precipitation of hydroxyapatite (HAp) on aCaP seeds of PLGA/aCaP. Upon offering a constant Ca2+ concentration, however, the previously observed anti-osteogenic effect was reversed: alkaline phosphatase, an early osteogenic marker gene, was upregulated on PLGA/aCaP compared to pristine PLGA. Hence, in addition to the cell–material interaction, the material–medium interaction was also important for the stem cell commitment here, affecting the cell–medium interaction. Complex in vitro models should therefore consider all factors, as coupled impacts might emerge.


2014 ◽  
Vol 50 (62) ◽  
pp. 8484-8487 ◽  
Author(s):  
Rameshwar Tatavarty ◽  
Hao Ding ◽  
Guijin Lu ◽  
Robert J. Taylor ◽  
Xiaohong Bi

Nanocomposites consisting of oblong ultrathin plate shaped calcium phosphate nanoparticles and graphene oxide microflakes were synthesized and have demonstrated markedly synergistic effect in accelerating stem cell differentiation to osteoblasts.


Author(s):  
Qingyao Kong ◽  
Yuanyuan Li ◽  
Jiping Yue ◽  
Xiaoyang Wu ◽  
Ming Xu

AbstractAlcohol use disorder (AUD) is one of the foremost public health problems. Alcohol is also frequently co-abused with cocaine. There is a huge unmet need for the treatment of AUD and/or cocaine co-abuse. We recently demonstrated that skin grafts generated from mouse epidermal stem cells that had been engineered by CRISPR-mediated genome editing could be transplanted onto mice as a gene delivery platform. Here, we show that expression of the glucagon-like peptide-1 (GLP1) gene delivered by epidermal stem cells attenuated development and reinstatement of alcohol-induced drug-taking and seeking as well as voluntary oral alcohol consumption. GLP1 derived from the skin grafts decreased alcohol-induced increase in dopamine levels in the nucleus accumbens. In exploring the potential of this platform in reducing concurrent use of drugs, we developed a novel co-grafting procedure for both modified human butyrylcholinesterase (hBChE)- and GLP1-expressing cells. Epidermal stem cell-derived hBChE and GLP1 reduced acquisition of drug-taking and toxicity induced by alcohol and cocaine co-administration. These results imply that cutaneous gene delivery through skin transplants may add a new option to treat drug abuse and co-abuse.


2016 ◽  
Vol 21 (7) ◽  
pp. 682-695 ◽  
Author(s):  
Taichi Tenkumo ◽  
Juan Ramón Vanegas Sáenz ◽  
Yukyo Takada ◽  
Masatoshi Takahashi ◽  
Olga Rotan ◽  
...  

2017 ◽  
Vol 29 (04) ◽  
pp. 1750027 ◽  
Author(s):  
Ko-Chung Yen ◽  
I-Hua Chen ◽  
Feng-Huei Lin

A major aim of gene therapy is the efficient and specific delivery of therapeutic gene into the desired target tissues. Development of reliable vectors is a major challenge in gene therapy. The aim of this study is to develop calcium phosphate nanoparticles as novel non-viral vectors for the gene delivery system. Calcium phosphate nanoparticles were prepared by water-in-oil microemulsion method with a water to surfactant molar ratio, Wo [Formula: see text] 2–10. This paper studies the design and synthesis of ultra-low size, highly monodispersed DNA doped calcium phosphate nanoparticles of size around 100[Formula: see text]nm in diameter. The structure of DNA-calcium phosphate nanocomplex observed by TEM was displayed as a shell-like structure. This study used pEGFP as a reporter gene. The encapsulating efficiency to encapsulate DNA inside the nanoparticles was greater than 80%. In the MTT test, both calcium phosphate nanoparticles and DNA-calcium phosphate nanocomplex have no negative effect for 293T cells. By gel electrophoresis of free and entrapped pEGFP DNA, the DNA encapsulated inside the nanoparticles was protected from the external DNaseI environment. In vitro transfection studies in 293T cell-line, the DNA-calcium phosphate nanocomplex could be used safely to transfer the encapsulated DNA into the 293T cells and expression green fluorescent protein. The characteristic of DNA-calcium phosphate nanocomplex to deliver DNA belongs to slow release. The property of DNA-calcium phosphate nanocomplex was fit in the requirement of non-viral vectors for the gene delivery system.


Nanoscale ◽  
2019 ◽  
Vol 11 (41) ◽  
pp. 19408-19421 ◽  
Author(s):  
Valentina Bordoni ◽  
Giacomo Reina ◽  
Marco Orecchioni ◽  
Giulia Furesi ◽  
Stefanie Thiele ◽  
...  

Graphene oxide complexed with calcium phosphate nanoparticles enhances bone regeneration through signalling between monocytes and mesenchymal stem cells.


2021 ◽  
Vol 21 ◽  
Author(s):  
Ali Hassanzadeh ◽  
Somayeh Shamlou ◽  
Niloufar Yousefi ◽  
Marzieh Nikoo ◽  
Javad Verdi

: Recently, genetic engineering by various strategies to stimulate gene expression in a specific and controllable mode is a speedily growing therapeutic approach. Genetic modification of human stem or progenitor cells, such as embryonic stem cells (ESCs), neural progenitor cells (NPCs), mesenchymal stem/stromal cells (MSCs), and hematopoietic stem cells (HSCs) for direct delivery of specific therapeutic molecules or genes has been evidenced as an opportune plan in the context of regenerative medicine due to their supported viability, proliferative features, and metabolic qualities. On the other hand, a large number of studies have investigated the efficacy of modified stem cells in cancer therapy using cells from various sources, disparate transfection means for gene delivery, different transfected yields, and wide variability of tumor models. Accordingly, cell-based gene therapy holds substantial aptitude for the treatment of human malignancy as it could relieve signs or even cure cancer succeeding expression of therapeutic or suicide transgene products; however, there exist inconsistent results in this regard. Herein, we deliver a brief overview of stem cell potential to use in cancer therapy and regenerative medicine and importantly discuss stem cells based gene delivery competencies to stimulate tissue repair and replacement in concomitant with their potential to use as an anti-cancer therapeutic strategy, focusing on the last two decades in vivo studies.


2017 ◽  
Vol 9 (12) ◽  
pp. 10435-10445 ◽  
Author(s):  
Xiangang Huang ◽  
Diana Andina ◽  
Jingshui Ge ◽  
Anne Labarre ◽  
Jean-Christophe Leroux ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document