Thickness-dependent in-plane thermal conductivity of suspended MoS2 grown by chemical vapor deposition

Nanoscale ◽  
2017 ◽  
Vol 9 (7) ◽  
pp. 2541-2547 ◽  
Author(s):  
Jung Jun Bae ◽  
Hye Yun Jeong ◽  
Gang Hee Han ◽  
Jaesu Kim ◽  
Hyun Kim ◽  
...  

We observe that the Fuchs–Sondheimer model works for the thickness-dependent thermal conductivity of MoS2 down to 10 nm in thickness at room temperature, yielding a phonon mean free path of 17 nm for bulk.

2021 ◽  
Vol 7 (16) ◽  
pp. eabf7358
Author(s):  
Meng Peng ◽  
Runzhang Xie ◽  
Zhen Wang ◽  
Peng Wang ◽  
Fang Wang ◽  
...  

Blackbody-sensitive room-temperature infrared detection is a notable development direction for future low-dimensional infrared photodetectors. However, because of the limitations of responsivity and spectral response range for low-dimensional narrow bandgap semiconductors, few low-dimensional infrared photodetectors exhibit blackbody sensitivity. Here, highly crystalline tellurium (Te) nanowires and two-dimensional nanosheets were synthesized by using chemical vapor deposition. The low-dimensional Te shows high hole mobility and broadband detection. The blackbody-sensitive infrared detection of Te devices was demonstrated. A high responsivity of 6650 A W−1 (at 1550-nm laser) and the blackbody responsivity of 5.19 A W−1 were achieved. High-resolution imaging based on Te photodetectors was successfully obtained. All the results suggest that the chemical vapor deposition–grown low-dimensional Te is one of the competitive candidates for sensitive focal-plane-array infrared photodetectors at room temperature.


RSC Advances ◽  
2016 ◽  
Vol 6 (100) ◽  
pp. 98001-98009 ◽  
Author(s):  
Thais Chagas ◽  
Thiago H. R. Cunha ◽  
Matheus J. S. Matos ◽  
Diogo D. dos Reis ◽  
Karolline A. S. Araujo ◽  
...  

We have used atomically-resolved scanning tunneling microscopy and spectroscopy to study the interplay between the atomic and electronic structure of graphene formed on copper via chemical vapor deposition.


MRS Bulletin ◽  
2001 ◽  
Vol 26 (6) ◽  
pp. 458-463 ◽  
Author(s):  
Jitendra S. Goela ◽  
Nathaniel E. Brese ◽  
Michael A. Pickering ◽  
John E. Graebner

Chemical vapor deposition (CVD) is an attractive method for producing bulk and thin-film materials for a variety of applications. In this method, gaseous reagents condense onto a substrate and then react to produce solid materials. The materials produced by CVD are theoretically dense, highly pure, and have other superior properties.


Sign in / Sign up

Export Citation Format

Share Document