Ameliorative effect of quercetin nanorods on diabetic mice: mechanistic and therapeutic strategies

RSC Advances ◽  
2016 ◽  
Vol 6 (60) ◽  
pp. 55092-55103 ◽  
Author(s):  
Md. Maroof Alam ◽  
K. M. Abdullah ◽  
Braj Raj Singh ◽  
Alim Hussain Naqvi ◽  
Imrana Naseem

Quercetin is a natural polyphenolic compound that acts as a strong antioxidant for reactive oxygen species (ROS) generated by any physical or chemical action.

Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
En Yin Lai ◽  
Suping Zhang ◽  
Qian Huang ◽  
Qiaoling Wang ◽  
Liang Zhao ◽  
...  

Background: Canonical Wnt signaling is involved in oxidative stress and diabetes but its role in diabetic renal microvascular dysfunction is unclear. We tested the hypothesis that enhanced canonical Wnt signaling in renal afferent arterioles from diabetic mice increases reactive oxygen species (ROS) and contractions to endothelin-1 (ET-1). Methods: Diabetic or control C57Bl/6 mice received vehicle or sulindac (40 mg·kg -1 ·day -1 ) to block canonical Wnt signaling for 4 weeks. ET-1 contractions were measured in diameter changes and H 2 O 2 and O 2 .- by fluorescence microscopy. Arteriolar protein expression and enzymatic activity were examined by standard methods. Results: Compared to control, diabetic mouse afferent arteriole had significantly increased O 2 .- (+84%) and H 2 O 2 (+91%) and enhanced sensitivity to ET-1 at 10 -8 mol·l -1 (-72±4% versus -43±4%, P<0.05) accompanied by significantly (P<0.005) reduced protein expressions and activities for catalase and superoxide dismutase 2 (SOD2). Incubation of afferent arterioles from normal or diabetic mice with PEG-SOD reduced responses to ET-1 whereas incubation with PEG-catalase reduced sensitivity to ET-1 selectively in arterioles from diabetic mice. The arteriolar protein expressions for canonical Wnt signaling indicated overactivation of this pathway in diabetic mice (2.6-fold increase in p-GSK-3β/GSK-3β and 3.3-fold decrease in p-β-catenin/β-catenin). Sulindac given to diabetic mice normalized the canonical Wnt signaling protein and arteriolar O 2 .- , H 2 O 2 and ET-1 contractions while doubling (P<0.05) microvascular catalase and SOD2. Conclusions: Increased ROS, notably H 2 O 2 , mediated by canonical Wnt signaling contributes to enhanced afferent arteriolar sensitivity to ET-1 in diabetes. Thus, antioxidant pharmacological strategies targeting canonical Wnt signaling may improve vascular function in diabetic nephropathy.


2007 ◽  
Vol 9 (10) ◽  
pp. 1541-1568 ◽  
Author(s):  
Kyra A. Gelderman ◽  
Malin Hultqvist ◽  
Lina M. Olsson ◽  
Kristin Bauer ◽  
Angela Pizzolla ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ilya A. Demyanenko ◽  
Vlada V. Zakharova ◽  
Olga P. Ilyinskaya ◽  
Tamara V. Vasilieva ◽  
Artem V. Fedorov ◽  
...  

Oxidative stress is widely recognized as an important factor in the delayed wound healing in diabetes. However, the role of mitochondrial reactive oxygen species in this process is unknown. It was assumed that mitochondrial reactive oxygen species are involved in many wound-healing processes in both diabetic humans and animals. We have applied the mitochondria-targeted antioxidant 10-(6′-plastoquinonyl)decyltriphenylphosphonium (SkQ1) to explore the role of mitochondrial reactive oxygen species in the wound healing of genetically diabetic mice. Healing of full-thickness excisional dermal wounds in diabetic C57BL/KsJ-db−/db− mice was significantly enhanced after long-term (12 weeks) administration of SkQ1. SkQ1 accelerated wound closure and stimulated epithelization, granulation tissue formation, and vascularization. On the 7th day after wounding, SkQ1 treatment increased the number of α-smooth muscle actin-positive cells (myofibroblasts), reduced the number of neutrophils, and increased macrophage infiltration. SkQ1 lowered lipid peroxidation level but did not change the level of the circulatory IL-6 and TNF. SkQ1 pretreatment also stimulated cell migration in a scratch-wound assay in vitro under hyperglycemic condition. Thus, a mitochondria-targeted antioxidant normalized both inflammatory and regenerative phases of wound healing in diabetic mice. Our results pointed to nearly all the major steps of wound healing as the target of excessive mitochondrial reactive oxygen species production in type II diabetes.


Sign in / Sign up

Export Citation Format

Share Document