scholarly journals A comparative investigation of different chemical treatments on SiO anode materials for lithium-ion batteries: towards long-term stability

RSC Advances ◽  
2017 ◽  
Vol 7 (8) ◽  
pp. 4501-4509 ◽  
Author(s):  
Jihoon Woo ◽  
Seong-Ho Baek

In this work, we conduct a comparative study of boron-doped SiO (HB-SiO) and carbon-coated SiO (HC-SiO) to find an effective means of improving the electrochemical performances of SiO anode materials during long-cycle tests.

2016 ◽  
Vol 4 (33) ◽  
pp. 12714-12719 ◽  
Author(s):  
Shitong Wang ◽  
Yong Yang ◽  
Caihua Jiang ◽  
Ye Hong ◽  
Wei Quan ◽  
...  

Li4Ti5O12–TiO2/Sn nanowires embedded in N-doped carbon network were synthesized via a simple heterostructured growth process, and exhibited excellent electrochemical performances as anode materials for lithium ion batteries


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
La Li ◽  
Weijia Liu ◽  
Kai Jiang ◽  
Di Chen ◽  
Fengyu Qu ◽  
...  

AbstractZn-ion hybrid supercapacitors (SCs) are considered as promising energy storage owing to their high energy density compared to traditional SCs. How to realize the miniaturization, patterning, and flexibility of the Zn-ion SCs without affecting the electrochemical performances has special meanings for expanding their applications in wearable integrated electronics. Ti3C2Tx cathode with outstanding conductivity, unique lamellar structure and good mechanical flexibility has been demonstrated tremendous potential in the design of Zn-ion SCs, but achieving long cycling stability and high rate stability is still big challenges. Here, we proposed a facile laser writing approach to fabricate patterned Ti3C2Tx-based Zn-ion micro-supercapacitors (MSCs), followed by the in-situ anneal treatment of the assembled MSCs to improve the long-term stability, which exhibits 80% of the capacitance retention even after 50,000 charge/discharge cycles and superior rate stability. The influence of the cathode thickness on the electrochemical performance of the MSCs is also studied. When the thickness reaches 0.851 µm the maximum areal capacitance of 72.02 mF cm−2 at scan rate of 10 mV s−1, which is 1.77 times higher than that with a thickness of 0.329 µm (35.6 mF cm−2). Moreover, the fabricated Ti3C2Tx based Zn-ion MSCs have excellent flexibility, a digital timer can be driven by the single device even under bending state, a flexible LED displayer of “TiC” logo also can be easily lighted by the MSC arrays under twisting, crimping, and winding conditions, demonstrating the scalable fabrication and application of the fabricated MSCs in portable electronics.


Energy ◽  
2021 ◽  
Vol 222 ◽  
pp. 119913
Author(s):  
Jiasheng Chen ◽  
Xuan Liang Wang ◽  
En Mei Jin ◽  
Seung-Guen Moon ◽  
Sang Mun Jeong

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1672
Author(s):  
Shih-Chieh Hsu ◽  
Tzu-Ten Huang ◽  
Yen-Ju Wu ◽  
Cheng-Zhang Lu ◽  
Huei Chu Weng ◽  
...  

Carbon-coated Li4Ti5O12 (LTO) has been prepared using polyimide (PI) as a carbon source via the thermal imidization of polyamic acid (PAA) followed by a carbonization process. In this study, the PI with different structures based on pyromellitic dianhydride (PMDA), 4,4′-oxydianiline (ODA), and p-phenylenediamine (p-PDA) moieties have been synthesized. The effect of the PI structure on the electrochemical performance of the carbon-coated LTO has been investigated. The results indicate that the molecular arrangement of PI can be improved when the rigid p-PDA units are introduced into the PI backbone. The carbons derived from the p-PDA-based PI show a more regular graphite structure with fewer defects and higher conductivity. As a result, the carbon-coated LTO exhibits a better rate performance with a discharge capacity of 137.5 mAh/g at 20 C, which is almost 1.5 times larger than that of bare LTO (94.4 mAh/g).


2017 ◽  
Vol 422 ◽  
pp. 1113-1119 ◽  
Author(s):  
Yu Ding ◽  
Lihui Chen ◽  
Pei Pan ◽  
Jun Du ◽  
Zhengbing Fu ◽  
...  

2016 ◽  
Vol 4 (2) ◽  
pp. 552-560 ◽  
Author(s):  
Wenfeng Ren ◽  
Yanhong Wang ◽  
Zailei Zhang ◽  
Qiangqiang Tan ◽  
Ziyi Zhong ◽  
...  

Porous silicon/carbon composites prepared by the solvothermal reaction show excellent electrochemical performance as anode materials for lithium ion batteries.


Sign in / Sign up

Export Citation Format

Share Document