scholarly journals ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost

2017 ◽  
Vol 8 (4) ◽  
pp. 3192-3203 ◽  
Author(s):  
J. S. Smith ◽  
O. Isayev ◽  
A. E. Roitberg

We demonstrate how a deep neural network (NN) trained on a data set of quantum mechanical (QM) DFT calculated energies can learn an accurate and transferable atomistic potential for organic molecules containing H, C, N, and O atoms.


Author(s):  
Yueqing Wang ◽  
Xinwang Liu ◽  
Yong Dou ◽  
Rongchun Li

Multiple kernel clustering (MKC) algorithms have been extensively studied and applied to various applications. Although they demonstrate great success in both the theoretical aspects and applications, existing MKC algorithms cannot be applied to large-scale clustering tasks due to: i) the heavy computational cost to calculate the base kernels; and ii) insufficient memory to load the kernel matrices. In this paper, we propose an approximate algorithm to overcome these issues, and to make it be applicable to large-scale applications. Specifically, our algorithm trains a deep neural network to regress the indicating matrix generated by MKC algorithms on a small subset, and then obtains the approximate indicating matrix of the whole data set using the trained network, and finally performs the $k$-means on the output of our network. By mapping features into indicating matrix directly, our algorithm avoids computing the full kernel matrices, which dramatically decreases the memory requirement. Extensive experiments show that our algorithm consumes less time than most comparatively similar algorithms, while it achieves comparable performance with MKC algorithms.



Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3978
Author(s):  
Rocco Peter Fornari ◽  
Piotr de Silva

Discovering new materials for energy storage requires reliable and efficient protocols for predicting key properties of unknown compounds. In the context of the search for new organic electrolytes for redox flow batteries, we present and validate a robust procedure to calculate the redox potentials of organic molecules at any pH value, using widely available quantum chemistry and cheminformatics methods. Using a consistent experimental data set for validation, we explore and compare a few different methods for calculating reaction free energies, the treatment of solvation, and the effect of pH on redox potentials. We find that the B3LYP hybrid functional with the COSMO solvation method, in conjunction with thermal contributions evaluated from BLYP gas-phase harmonic frequencies, yields a good prediction of pH = 0 redox potentials at a moderate computational cost. To predict how the potentials are affected by pH, we propose an improved version of the Alberty-Legendre transform that allows the construction of a more realistic Pourbaix diagram by taking into account how the protonation state changes with pH.



2020 ◽  
pp. 1-14
Author(s):  
Esraa Hassan ◽  
Noha A. Hikal ◽  
Samir Elmuogy

Nowadays, Coronavirus (COVID-19) considered one of the most critical pandemics in the earth. This is due its ability to spread rapidly between humans as well as animals. COVID_19 expected to outbreak around the world, around 70 % of the earth population might infected with COVID-19 in the incoming years. Therefore, an accurate and efficient diagnostic tool is highly required, which the main objective of our study. Manual classification was mainly used to detect different diseases, but it took too much time in addition to the probability of human errors. Automatic image classification reduces doctors diagnostic time, which could save human’s life. We propose an automatic classification architecture based on deep neural network called Worried Deep Neural Network (WDNN) model with transfer learning. Comparative analysis reveals that the proposed WDNN model outperforms by using three pre-training models: InceptionV3, ResNet50, and VGG19 in terms of various performance metrics. Due to the shortage of COVID-19 data set, data augmentation was used to increase the number of images in the positive class, then normalization used to make all images have the same size. Experimentation is done on COVID-19 dataset collected from different cases with total 2623 where (1573 training,524 validation,524 test). Our proposed model achieved 99,046, 98,684, 99,119, 98,90 In terms of Accuracy, precision, Recall, F-score, respectively. The results are compared with both the traditional machine learning methods and those using Convolutional Neural Networks (CNNs). The results demonstrate the ability of our classification model to use as an alternative of the current diagnostic tool.



Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 807
Author(s):  
Carlos M. Castorena ◽  
Itzel M. Abundez ◽  
Roberto Alejo ◽  
Everardo E. Granda-Gutiérrez ◽  
Eréndira Rendón ◽  
...  

The problem of gender-based violence in Mexico has been increased considerably. Many social associations and governmental institutions have addressed this problem in different ways. In the context of computer science, some effort has been developed to deal with this problem through the use of machine learning approaches to strengthen the strategic decision making. In this work, a deep learning neural network application to identify gender-based violence on Twitter messages is presented. A total of 1,857,450 messages (generated in Mexico) were downloaded from Twitter: 61,604 of them were manually tagged by human volunteers as negative, positive or neutral messages, to serve as training and test data sets. Results presented in this paper show the effectiveness of deep neural network (about 80% of the area under the receiver operating characteristic) in detection of gender violence on Twitter messages. The main contribution of this investigation is that the data set was minimally pre-processed (as a difference versus most state-of-the-art approaches). Thus, the original messages were converted into a numerical vector in accordance to the frequency of word’s appearance and only adverbs, conjunctions and prepositions were deleted (which occur very frequently in text and we think that these words do not contribute to discriminatory messages on Twitter). Finally, this work contributes to dealing with gender violence in Mexico, which is an issue that needs to be faced immediately.



2019 ◽  
Vol 10 (36) ◽  
pp. 8374-8383 ◽  
Author(s):  
Mohammad Atif Faiz Afzal ◽  
Aditya Sonpal ◽  
Mojtaba Haghighatlari ◽  
Andrew J. Schultz ◽  
Johannes Hachmann

Computational pipeline for the accelerated discovery of organic materials with high refractive index via high-throughput screening and machine learning.



Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1514
Author(s):  
Seung-Ho Lim ◽  
WoonSik William Suh ◽  
Jin-Young Kim ◽  
Sang-Young Cho

The optimization for hardware processor and system for performing deep learning operations such as Convolutional Neural Networks (CNN) in resource limited embedded devices are recent active research area. In order to perform an optimized deep neural network model using the limited computational unit and memory of an embedded device, it is necessary to quickly apply various configurations of hardware modules to various deep neural network models and find the optimal combination. The Electronic System Level (ESL) Simulator based on SystemC is very useful for rapid hardware modeling and verification. In this paper, we designed and implemented a Deep Learning Accelerator (DLA) that performs Deep Neural Network (DNN) operation based on the RISC-V Virtual Platform implemented in SystemC in order to enable rapid and diverse analysis of deep learning operations in an embedded device based on the RISC-V processor, which is a recently emerging embedded processor. The developed RISC-V based DLA prototype can analyze the hardware requirements according to the CNN data set through the configuration of the CNN DLA architecture, and it is possible to run RISC-V compiled software on the platform, can perform a real neural network model like Darknet. We performed the Darknet CNN model on the developed DLA prototype, and confirmed that computational overhead and inference errors can be analyzed with the DLA prototype developed by analyzing the DLA architecture for various data sets.



2021 ◽  
Author(s):  
Hugo Mitre-Hernandez ◽  
Rodolfo Ferro-Perez ◽  
Francisco Gonzalez-Hernandez

BACKGROUND Mental health effects during COVID-19 quarantine need to be handled because patients, relatives, and healthcare workers are living with negative emotional behaviors. The clinical disorders of depression and anxiety are evoking anger, fear, sadness, disgust, and reducing happiness. Therefore, track emotions with the help of psychologists on online consultations –to reduce the risk of contagion– will go a long way in assisting with mental health. The human micro-expressions can describe genuine emotions of people and can be captured by Deep Neural Networks (DNNs) models. But the challenge is to implement it under the poor performance of a part of society's computers and the low speed of internet connection. OBJECTIVE This study aimed to create a useful and usable web application to record emotions in a patient’s card in real-time, achieving a small data transfer, and a Convolutional Neural Networks (CNN) model with a low computational cost. METHODS To validate the low computational cost premise, firstly, we compare DNN architectures results, collecting the floating-point operations per second (FLOPS), the Number of Parameters (NP) and accuracy from the MobileNet, PeleeNet, Extended Deep Neural Network (EDNN), Inception- Based Deep Neural Network (IDNN) and our proposed Residual mobile-based Network (ResmoNet) model. Secondly, we compare the trained models' results in terms of Main Memory Utilization (MMU) and Response Time to complete the Emotion recognition (RTE). Finally, we design a data transfer that includes the raw data of emotions and the basic text information of the patient. The web application was evaluated with the System Usability Scale (SUS) and a utility questionnaire by psychologists and psychiatrists (experts). RESULTS All CNN models were set up using 150 epochs for training and testing comparing the results for each variable in ResmoNet with the best model. It was obtained that ResmoNet has 115,976 NP less than MobileNet, 243,901 FLOPS less than MobileNet, and 5% less accuracy than EDNN (95%). Moreover, ResmoNet used less MMU than any model, only EDNN overcomes ResmoNet in 0.01 seconds for RTE. Finally, with our model, we develop a web application to collect emotions in real-time during a psychological consultation. For data transfer, the patient’s card and raw emotional data have 2 kb with a UTF-8 encoding approximately. Finally, according to the experts, the web application has good usability (73.8 of 100) and utility (3.94 of 5). CONCLUSIONS A usable and useful web application for psychologists and psychiatrists is presented. This tool includes an efficient and light facial emotion recognition model. Its purpose is to be a complementary tool for diagnostic processes.



Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1465
Author(s):  
Taikyeong Jeong

When attempting to apply a large-scale database that holds the behavioral intelligence training data of deep neural networks, the classification accuracy of the artificial intelligence algorithm needs to reflect the behavioral characteristics of the individual. When a change in behavior is recognized, that is, a feedback model based on a data connection model is applied, an analysis of time series data is performed by extracting feature vectors and interpolating data in a deep neural network to overcome the limitations of the existing statistical analysis. Using the results of the first feedback model as inputs to the deep neural network and, furthermore, as the input values of the second feedback model, and interpolating the behavioral intelligence data, that is, context awareness and lifelog data, including physical activities, involves applying the most appropriate conditions. The results of this study show that this method effectively improves the accuracy of the artificial intelligence results. In this paper, through an experiment, after extracting the feature vector of a deep neural network and restoring the missing value, the classification accuracy was verified to improve by about 20% on average. At the same time, by adding behavioral intelligence data to the time series data, a new data connection model, the Deep Neural Network Feedback Model, was proposed, and it was verified that the classification accuracy can be improved by about 8 to 9% on average. Based on the hypothesis, the F (X′) = X model was applied to thoroughly classify the training data set and test data set to present a symmetrical balance between the data connection model and the context-aware data. In addition, behavioral activity data were extrapolated in terms of context-aware and forecasting perspectives to prove the results of the experiment.



2019 ◽  
Vol 8 (3) ◽  
pp. 4373-4378

The amount of data belonging to different domains are being stored rapidly in various repositories across the globe. Extracting useful information from the huge volumes of data is always difficult due to the dynamic nature of data being stored. Data Mining is a knowledge discovery process used to extract the hidden information from the data stored in various repositories, termed as warehouses in the form of patterns. One of the popular tasks of data mining is Classification, which deals with the process of distinguishing every instance of a data set into one of the predefined class labels. Banking system is one of the realworld domains, which collects huge number of client data on a daily basis. In this work, we have collected two variants of the bank marketing data set pertaining to a Portuguese financial institution consisting of 41188 and 45211 instances and performed classification on them using two data reduction techniques. Attribute subset selection has been performed on the first data set and the training data with the selected features are used in classification. Principal Component Analysis has been performed on the second data set and the training data with the extracted features are used in classification. A deep neural network classification algorithm based on Backpropagation has been developed to perform classification on both the data sets. Finally, comparisons are made on the performance of each deep neural network classifier with the four standard classifiers, namely Decision trees, Naïve Bayes, Support vector machines, and k-nearest neighbors. It has been found that the deep neural network classifier outperforms the existing classifiers in terms of accuracy



Sign in / Sign up

Export Citation Format

Share Document