Extra-high short-circuit current for bifacial solar cells in sunny and dark–light conditions

2017 ◽  
Vol 53 (72) ◽  
pp. 10046-10049 ◽  
Author(s):  
Jialong Duan ◽  
Yanyan Duan ◽  
Yuanyuan Zhao ◽  
Benlin He ◽  
Qunwei Tang

We present here a symmetrically structured bifacial solar cell tailored by two fluorescent photoanodes and a platinum/titanium/platinum counter electrode, yielding extra-high short-circuit current densities as high as 28.59 mA cm−2 and 119.9 μA cm−2 under simulated sunlight irradiation (100 mW cm−2, AM1.5) and dark–light conditions, respectively.

2021 ◽  
Vol 2126 (1) ◽  
pp. 012004
Author(s):  
N Sari ◽  
A J Palamba ◽  
S Saehana ◽  
A W M Diah

Abstract This study aims to create a DSSC using PEDOT-Carrageenan-based electrolyte as a learning media for photovoltaic physics concepts. This research was experimental research conducted in the laboratory of subdepartment of physics education, Tadulako University. In this study, DSSC making process used a substrate made from TCO-FTO polymer. The TiO2 photoelectrode layer was deposited using the doctor blade technique and Ruthenizer as a dye-sensitizer and the platinum layer was deposited on the counter electrode using the sputtering technique. Process parameters that affect the characteristics of solar cells were analyzed and measured using the I-V characteristic curve. The samples measured consisted of several types of PEDOT-Carrageenan electrolytes, including Kappa, Lambda and Iota. The results of voltage measurements of each sample of the DSSC prototype were obtained quite well at a voltage of 91.8 mV using PEDOT-Carrageenan Kappa 1:2 electrolyte and the short circuit current obtained reached 57.6 uA. The best solar cell prototype produces an efficiency of 0.0003333728 %. It indicates that DSSC can be made by PEDOT-Carragenan electrolyte and can be used as a learning tool for photovoltaic physics concepts.


2016 ◽  
Vol 78 (6-7) ◽  
Author(s):  
Nurul Aqidah Mohd Sinin ◽  
Mohd Adib Ibrahim ◽  
Suhaila Sepeai ◽  
Mohamad Yusof Sulaiman ◽  
Mohd Asri Mat Teridi ◽  
...  

Surface passivation is the most significant step to keep the recombination loss at a tolerable minimum and avoid an unacceptably large efficiency loss when moving towards thinner silicon material. In this study, the modification and photosensitization on back surface field (BSF) of bifacial solar cell was investigated by using dye molecules nanostructure namely DiO. The DiO dye molecules nanostructure was passivated on SiNW and BSF layers using spin-coating method. The energy gaps of DiO dye are 2.14 eV (DiO in chloroform), 2.13 eV (DiO on silicon nanowire (SiNW)) and 2.12 eV (DiO on BSF). The time resolved photoluminescence increased with the DiO dye coated on SiNW ( 14Ï„">  = 1.24 nm) and BSF layers ( 14Ï„">  = 0.93 nm) compared to DiO dye in chloroform ( 14Ï„">  = 0.54 nm). The light trapping inside the interface layers of DiO dye/silicon indicating a slow process of charge recombination before its reach equilibrium states, it is due to interface interaction bonding within boundary layers and dye molecules nanostructure. The short circuit current density also increased about 25% from 4.44 to 5.56 mA/cm2 when applying the dye molecules nanostructure on BSF of the cell. Collection of photo carrier lead of internal and external quantum efficiency improved about 19% and 25%, respectively, is mainly due to energy transported to the junction. The photo-generated electron on DiO dye lead to improvement in the exciton dissociation efficiency leading to increase in the electrical properties.


2018 ◽  
Vol 35 (4) ◽  
pp. 816-823 ◽  
Author(s):  
M. Khalid Hossain ◽  
M.F. Pervez ◽  
S. Tayyaba ◽  
M. Jalal Uddin ◽  
A.A. Mortuza ◽  
...  

Abstract Efficiency of dye-sensitized solar cell (DSSC) depends on several interrelated factors such as type and concentration of dye, type and thickness of photoelectrode and counter electrode. Optimized combination of these factors leads to a more efficient cell. This paper presents the effect of these parameters on cell efficiency. TiO2 nanoporous thin films of different thicknesses (5 μm to 25 μm) were fabricated on indium doped tin oxide (ITO) coated glass by doctor blading method and characterized by inverted microscope, stylus surface profiler and scanning electron microscope (SEM). Natural organic dye of different concentrations, extracted from turmeric, was prepared with ethanol solvent. Different combinations of dye concentrations and film thicknesses along with different types of carbon catalyst have been investigated by I-V characterization. The result shows that the cell made of a counter electrode catalyst material prepared by candle flame carbon combined with about 15 μm thick photoelectrode and 100 mg/mL dye in ethanol solvent, achieves the highest efficiency of 0.45 %, with open circuit voltage of 566 mV and short circuit current density of 1.02 mA/cm2.


Author(s):  
Mark Blome ◽  
Kevin McPeak ◽  
Sven Burger ◽  
Frank Schmidt ◽  
David Norris

Purpose – The purpose of this paper is to find an optimized thin-film amorphous silicon solar cell design by numerically optimizing the light trapping efficiency of a pyramid-structured back-reflector using a frequency-domain finite element Maxwell solver. For this purpose short circuit current densities and absorption spectra within the investigated solar cell model are systematically analyzed. Furthermore, the authors employ a topology simulation method to accurately predict the material layer interfaces within the investigated solar cell model. The method simulates the chemical vapor deposition (CVD) process that is typically used to fabricate thin-film solar cells by combining a ballistic transport and reaction model (BTRM) with a level-set method in an iterative approach. Predicted solar cell models are far more realistic compared to solar cell models created assuming conformal material growth. The purpose of the topology simulation method is to increase the accuracy of thin-film solar cell models in order to facilitate highly accurate simulation results in solar cell design optimizations. Design/methodology/approach – The authors perform numeric optimizations using a frequency domain finite element Maxwell solver. Topology simulations are carried out using a BTRM combined with a level-set method in an iterative fashion. Findings – The simulation results reveal that the employed pyramid structured back-reflectors effectively increase the light path in the absorber mainly by exciting photonic waveguide modes. In using the optimization approach, the authors have identified solar cell models with cell periodicities around 480 nm and pyramid base widths around 450 nm to yield the highest short circuit current densities. Compared to equivalent solar cell models with flat back-reflectors, computed short circuit current densities are significantly increased. Furthermore, the paper finds that the solar cell models computed using the topology simulation approach represent a far more realistic approximation to a real solar cell stack compared to solar cell models computed by a conformal material growth assumption. Research limitations/implications – So far in the topology simulation approach the authors assume CVD as the material deposition process for all material layers. However, during the fabrication process sputtering (i.e. physical vapor deposition) will be employed for the Al:ZnO and ITO layers. In the framework of this ongoing research project the authors will extend the topology simulation approach to take the different material deposition processes into account. The differences in predicted material interfaces will presumably be only minor compared to the results shown here and certainly be insignificant relative to the differences the authors observe for solar cell models computed assuming conformal material growth. Originality/value – The authors systematically investigate and optimize the light trapping efficiency of a pyramid nano-structured back-reflector using rigorous electromagnetic field computations with a 3D finite element Maxwell solver. To the authors’ knowledge such an investigation has not been carried out yet in the solar cell research literature. The topology simulation approach (to the best of the authors’ knowledge) has previously not been applied to the modelling of solar cells. Typically a conformal layer growth assumption is used instead.


2020 ◽  
Vol 71 (7) ◽  
pp. 789-801
Author(s):  
T.O. Ahmed ◽  
O.O. Ogunleye ◽  
A.Y. Abdulrahaman ◽  
N. Alu

We report the successful application of reduced graphene oxide–titania (rGO–TiO2) nanocomposite as an efficient photoelectrode and an inexpensive polyaniline (PANI) synthesized by in-situ polymerization on graphite foam as a platinum substitute for tri-iodide reduction for dye‐sensitized solar cell (DSC). The bulk carrier concentration and conductivity of the PANI was measured to be 3.02x1017cm-3 and 4.89x10-1 W-1cm-1 respectively. Subsequently, three DSCs were assembled with rGO–TiO2 nanocomposite photoelectrode and PANI as counter electrode for one and the other two assembled using unmodified TiO2 photoelectrode with PANI and platinum as counter electrodes, respectively. The rGO loading allows more dye to be adsorbed due its large surface area thus improving the light harvesting efficiency (LHE). This improvement in LHE increases the short circuit current density (JSC). The JSC increase is more substantial compared to the reduction in VOC; thus, the increase in the efficiency of the cell with rGO-TiO2 nanocomposite electrode. The short circuit current density for the rGO-TiO2 DSC with PANI counter electrode is 0.45mAcm-2 while that for the unmodified TiO2 DSCs with PANI counter electrode and platinum counter electrode are 0.11mAcm-2 and 0.10 mAcm-2 respectively. This corresponds to 76% increase in the current density and it increases collection rate at the photoelectrode leading to enhanced power conversion efficiency of 0.13% compared with 0.04% and 0.02% for the DSCs assembled with unmodified TiO2 under full sunlight illumination (100 mW/cm2, AM 1.5G) as a result of the better charge collection efficiency of rGO, which reduces the back electron transfer process. This represent 69% enhancement of energy conversion efficiency in the DSC consisting of rGO modified TiO2


2001 ◽  
Vol 15 (17n19) ◽  
pp. 778-781 ◽  
Author(s):  
J. C. RIMADA ◽  
L. HERNÁNDEZ

A theoretical model has been developed which shows that the insertion of multi-quantum wells into the depletion region of a p-i(MQW)-n Al x Ga 1-x As solar cell can significantly enhance the conversion efficiencies. Open-circuit voltages, short-circuit current densities, I-V curves and conversion efficiencies have been calculated as functions of the well and barrier band gaps, width and depth of the wells, number of wells in the intrinsic region and the recombination rate in the interfaces. Particular emphasis is placed on calculation of absorption of the Al x Ga 1-x As quantum wells. These results are matched with p-i-n solar cells which are identical in all respects except that they do not have quantum wells. We demonstrated that for determined values of the studied parameters the conversion efficiencies of the quantum well solar cell is higher to corresponding cell without quantum wells.


2020 ◽  
Vol 71 (7) ◽  
pp. 789-801
Author(s):  
T.O. Ahmed ◽  
O.O. Ogunleye ◽  
A.Y. Abdulrahaman ◽  
N. Alu

We report the successful application of reduced graphene oxide–titania (rGO–TiO2) nanocomposite as an efficient photoelectrode and an inexpensive polyaniline (PANI) synthesized by in-situ polymerization on graphite foam as a platinum substitute for tri-iodide reduction for dye‐sensitized solar cell (DSC). The bulk carrier concentration and conductivity of the PANI was measured to be 3.02x1017cm-3 and 4.89x10-1 W-1cm-1 respectively. Subsequently, three DSCs were assembled with rGO–TiO2 nanocomposite photoelectrode and PANI as counter electrode for one and the other two assembled using unmodified TiO2 photoelectrode with PANI and platinum as counter electrodes, respectively. The rGO loading allows more dye to be adsorbed due its large surface area thus improving the light harvesting efficiency (LHE). This improvement in LHE increases the short circuit current density (JSC). The JSC increase is more substantial compared to the reduction in VOC; thus, the increase in the efficiency of the cell with rGO-TiO2 nanocomposite electrode. The short circuit current density for the rGO-TiO2 DSC with PANI counter electrode is 0.45mAcm-2 while that for the unmodified TiO2 DSCs with PANI counter electrode and platinum counter electrode are 0.11mAcm-2 and 0.10 mAcm-2 respectively. This corresponds to 76% increase in the current density and it increases collection rate at the photoelectrode leading to enhanced power conversion efficiency of 0.13% compared with 0.04% and 0.02% for the DSCs assembled with unmodified TiO2 under full sunlight illumination (100 mW/cm2, AM 1.5G) as a result of the better charge collection efficiency of rGO, which reduces the back electron transfer process. This represent 69% enhancement of energy conversion efficiency in the DSC consisting of rGO modified TiO2


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Klitsada Moolsarn ◽  
Apishok Tangtrakarn ◽  
Adulphan Pimsawat ◽  
Kornrawit Duangsa ◽  
Charusporn Mongkolkachit ◽  
...  

Carbon derived from hair is interesting because it has good electrocatalytic activity due to the existence of innate heteroatom dopants especially nitrogen and sulfur. In this study, a carbon catalyst containing high nitrogen contents (9.47 at.%) was fabricated without using any harsh chemicals. Moreover, the carbonization temperature was only 700°C. Carbonized hair/PEDOT:PSS composites (CxP) with varied carbon contents from x = 0.2 to 0.8 g were tested as a counter electrode (CE) for a dye-sensitized solar cell (DSSC). This type of DSSC CE has scarcely been investigated. A DSSC with a C0.6P CE provides the best efficiency (6.54 ± 0.11%) among all composite CEs because it has a high fill factor (FF) and a high short-circuit current density (Jsc). The efficiency of DSSC with C0.6P CE is lower than Pt’s (7.29 ± 0.01%) since the Pt-based DSSC has higher FF and Jsc values. However, C0.6P is still promising as a DSSC CE since it is more cost-effective than Pt.


2020 ◽  
Vol 16 (4) ◽  
pp. 556-567
Author(s):  
Asma Khalil ◽  
Zubair Ahmad ◽  
Farid Touati ◽  
Mohamed Masmoudi

Background: The photo-absorption and light trapping through the different layers of the organic solar cell structures are a growing concern now-a-days as it affects dramatically the overall efficiency of the cells. In fact, selecting the right material combination is a key factor in increasing the efficiency in the layers. In addition to good absorption properties, insertion of nanostructures has been proved in recent researches to affect significantly the light trapping inside the organic solar cell. All these factors are determined to expand the absorption spectrum and tailor it to a wider spectrum. Objective: The purpose of this investigation is to explore the consequence of the incorporation of the Ag nanostructures, with different sizes and structures, on the photo absorption of the organic BHJ thin films. Methods: Through a three-dimensional Maxwell solver software, Lumerical FDTD, a simulation and comparison of the optical absorption of the three famous organic materials blends poly(3- hexylthiophene): phenyl C71 butyric acid methyl ester (P3HT:PCBM), poly[N-9″-heptadecanyl-2,7- carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]: phenyl C71 butyric acid methyl ester (PCDTBT:PCBM) and poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt- 4,7-(2,1,3-benzothiadiazole)]: phenyl C71 butyric acid methyl ester (PCDPDTBT:PCBM) has been conducted. Furthermore, FDTD simulation study of the incorporation of nanoparticles structures with different sizes, in different locations and concentrations through a bulk heterojunction organic solar cell structure has also been performed. Results: It has been demonstrated that embedding nanostructures in different locations of the cell, specifically in the active layer and the hole transporting layer had a considerable effect of widening the absorption spectrum and increasing the short circuit current. The effect of incorporation the nanostructures in the active layer has been proved to be greater than in the HTL. Furthermore, the comparison results showed that, PCDTBT:PCBM is no more advantageous over P3HT:PCBM and PCPDTBT:PCBM, and P3HT:PCBM took the lead and showed better performance in terms of absorption spectrum and short circuit current value. Conclusion: This work revealed the significant effect of size, location and concentration of the Ag nanostructures while incorporated in the organic solar cell. In fact, embedding nanostructures in the solar cell widen the absorption spectrum and increases the short circuit current, this result has been proven to be significant only when the nanostructures are inserted in the active layer following specific dimensions and structures.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5986
Author(s):  
Tao Chen ◽  
Hao Guo ◽  
Leiming Yu ◽  
Tao Sun ◽  
Anran Chen ◽  
...  

Si/PEDOT: PSS solar cell is an optional photovoltaic device owing to its promising high photovoltaic conversion efficiency (PCE) and economic manufacture process. In this work, dopamine@graphene was firstly introduced between the silicon substrate and PEDOT:PSS film for Si/PEDOT: PSS solar cell. The dopamine@graphene was proved to be effective in improving the PCE, and the influence of mechanical properties of dopamine@graphene on solar cell performance was revealed. When dopamine@graphene was incorporated into the cell preparation, the antireflection ability of the cell was enhanced within the wavelength range of 300~450 and 650~1100 nm. The enhanced antireflection ability would benefit amount of the photon-generated carriers. The electrochemical impedance spectra test revealed that the introduction of dopamine@graphene could facilitate the separation of carriers and improve the junction quality. Thus, the short-circuit current density and fill factor were both promoted, which led to the improved PCE. Meanwhile, the influence of graphene concentration on device performances was also investigated. The photovoltaic conversion efficiency would be promoted from 11.06% to 13.15% when dopamine@graphene solution with concentration 1.5 mg/mL was applied. The achievements of this study showed that the dopamine@graphene composites could be an useful materials for high-performance Si/PEDOT:PSS solar cells.


Sign in / Sign up

Export Citation Format

Share Document