Hydrogen bond-assisted homochiral lattice packing between inorganic helices built from heterometallic units

2018 ◽  
Vol 47 (7) ◽  
pp. 2134-2137 ◽  
Author(s):  
Shuai Chen ◽  
Nagaraju Narayanam ◽  
Lei Zhang ◽  
Jian Zhang

Two helical chains have been constructed using heterometallic {TiMn2(μ3-O)} clusters as building blocks, where hydrogen bonding plays a key role for the chirality transmission.

2007 ◽  
Vol 60 (8) ◽  
pp. 578 ◽  
Author(s):  
Jingli Xie ◽  
Brendan F. Abrahams ◽  
Tobias J. Zimmermann ◽  
Arindam Mukherjee ◽  
Anthony G. Wedd

The structure directing influence of a variety of hydrogen-bonding cations on the arrangement of ferrocene mono- and di-sulfonate anions within the crystalline state is reported. The crystal structures of four different networks of composition A[Fe(η5-C5H5)(η5-C5H4SO3)] (A = imidazolium or N-methylimidazolium) and B2[Fe(η5-C5H4SO3)2] (B = imidazolium or pyridinium) are presented. The imidazolium ions are able to act as hydrogen bond bridges in the generation of layer-type structures similar to those found for guanidinium analogues. Secondary bonding interactions exert a powerful structure-directing influence within these networks even though the individual interactions appear to be rather weak.


2008 ◽  
Vol 73 (11) ◽  
pp. 1457-1474 ◽  
Author(s):  
Eugene S. Kryachko

The present work outlines the fair relationship of the computational model with the experiments on anion photoelectron spectroscopy for the gold-water complexes [Au(H2O)1≤n≤2]- that is established between the auride anion Au- and water monomer and dimer thanks to the nonconventional hydrogen bond where Au- casts as the nonconventional proton acceptor. This work also extends the computational model to the larger complexes [Au(H2O)3≤n≤5]- where gold considerably thwarts the shape of water clusters and even particularly breaks their conventional hydrogen bonding patterns. The fascinating phenomenon of the lavish proton acceptor character of Au- to form at least six hydrogen bonds with molecules of water is computationally unveiled in the present work for the first time.


2012 ◽  
Vol 68 (9) ◽  
pp. o335-o337 ◽  
Author(s):  
Saul H. Lapidus ◽  
Andreas Lemmerer ◽  
Joel Bernstein ◽  
Peter W. Stephens

A further example of using a covalent-bond-forming reaction to alter supramolecular assembly by modification of hydrogen-bonding possibilities is presented. This concept was introduced by Lemmerer, Bernstein & Kahlenberg [CrystEngComm(2011),13, 55–59]. The title structure, C9H11N3O·C7H6O4, which consists of a reacted niazid molecule,viz.N′-(propan-2-ylidene)nicotinohydrazide, and 2,4-dihydroxybenzoic acid, was solved from powder diffraction data using simulated annealing. The results further demonstrate the relevance and utility of powder diffraction as an analytical tool in the study of cocrystals and their hydrogen-bond interactions.


2004 ◽  
Vol 60 (1) ◽  
pp. 90-96 ◽  
Author(s):  
Biserka Kojić-Prodić ◽  
Berislav Perić ◽  
Zoran Štefanić ◽  
Anton Meden ◽  
Janja Makarević ◽  
...  

To compare the structural properties of oxalamide and thiooxalamide groups in the formation of hydrogen bonds suitable for supramolecular assemblies a series of retropeptides was studied. Some of them, having oxalamide bridges, are gelators of organic solvents and water. However, retropeptides with oxygen replaced by the sp 2 sulfur have not exhibited such properties. The crystal structures of the two title compounds are homostructural, i.e. they have similar packing arrangements. The monothio compound crystallizes in the orthorhombic space group P212121 with two molecules in the asymmetric unit arranged in a hydrogen-bond network with an approximate 41 axis along the crystallographic b axis. However, the dithio and dioxo analogues crystallize in the tetragonal space group P41 with similar packing patterns and hydrogen-bonding systems arranged in agreement with a crystallographic 41 axis. Thus, these two analogues are isostructural having closely related hydrogen-bonding patterns in spite of the different size and polarity of oxygen and sulfur which serve as the proton acceptors.


2016 ◽  
Vol 40 (7) ◽  
pp. 6451-6459 ◽  
Author(s):  
Pablo Mella ◽  
Karina Cabezas ◽  
Carla Cerda ◽  
Marjorie Cepeda-Plaza ◽  
German Günther ◽  
...  

The unusual behavior of the solution luminescence emission of [(phen)(H2O)Re(CO)3]+(CF3SO3)− depends on the solvent polarity, and coordinating and hydrogen bonding ability.


2013 ◽  
Vol 9 ◽  
pp. 1127-1134 ◽  
Author(s):  
Josué M Silla ◽  
Rodrigo A Cormanich ◽  
Roberto Rittner ◽  
Matheus P Freitas

A 1 TS J F,H(O) coupling pathway, dictated by a hydrogen bond, in some 2-fluorobenzoic acids has been observed, while such an interaction does not occur in 2-fluorophenol. Thus, this work reports the conformational analysis of 2-fluorophenylboronic acid (1), in order to evaluate a possible intramolecular OH∙∙∙F hydrogen bond in comparison to an nF→pB interaction, which mimics the quantum nF→σ*OH hydrogen bond that would be expected in 2-fluorophenol. 2-Fluorophenylborane (3), which does not experience hydrogen bonding, was used to verify whether nF→pB interaction governs the conformational equilibrium in 1 due to a predominant OH∙∙∙F hydrogen bond or to other effects. A series of 2-X-phenylboranes (X = Cl, Br, NH2, PH2, OH and SH) were further computationally analyzed to search for electron donors to boron, capable of influencing the conformational equilibrium. Overall, the intramolecular OH∙∙∙F hydrogen bond in 1 is quite stabilizing and dictates the 1 h J F,H(O) coupling constant. Moreover, electron donation to the empty p orbital of boron (for noncoplanar BH2 moiety relative to the phenyl ring) is also significantly stabilizing for the NH2 and PH2 derivatives, but not enough to make the corresponding conformers appreciably populated, because of steric effects and the loss of πCC→pB resonance. Thus, the results found earlier for 2-fluorophenol about the lack of intramolecular hydrogen bonding are now corroborated.


2016 ◽  
Vol 18 (27) ◽  
pp. 18145-18160 ◽  
Author(s):  
Claire R. Ashworth ◽  
Richard P. Matthews ◽  
Tom Welton ◽  
Patricia A. Hunt

Computational analysis indicates flexibility and diversity in the hydrogen bonding, but limited charge delocalisation, within the choline chloride–urea eutectic.


Sign in / Sign up

Export Citation Format

Share Document